

Observations of atmospheric methyl peroxy nitrate during the Deep Convective Clouds and Chemistry experiment

<u>B. A. Nault^{1,*}, C. Garland¹, S. E. Pusede¹, P. J. Wooldridge¹, J. Crounse², J. M. St. Clair², P. O. Wennberg², T. Mikoviny³, A. Wisthaler³, I. B. Pollack⁴, J. Smith⁴, T. B. Ryerson⁴,</u>

K. Ullmann⁵, S. R. Hall⁵, G. S. Diskin⁶, G. W. Sachse⁶, J. Dibb7, L. G. Huey⁸, T. F. Hanisco⁹, A. Fried¹⁰, R. C. Cohen^{1,*} 1. University of California, Berkeley, CA, USA; 2. California Institute of Technology, Pasadena, CA, USA; 3. University of Innsbruck, Austria; 4. NOAA ESRL Chemical Sciences Division, Boulder, CO, USA; 5. Atmospheric Chemistry Division, National Center for Atmospheric Research Center, Hampton, VA, USA; 7. University of New Hampshire, Durham, NH, USA; 8. Georgia Institute of Technology, Atlanta, GA, USA; 9. NASA GSFC, Greenbelt, MD, USA; 10. University of Colorado, Boulder, CO, USA

Summary

The first direct observations of atmospheric methyl peroxy nitrate $(CH_3O_2NO_2)$ have been made using TD-LIF.

Motivation

- Deep convection transports ozone precursors, $RO_x (OH + HO_2 + RO_2 + CH_3O_2)$ and anthropogenic and lightning NO_x (NO + NO₂) to upper troposphere (UT).
- Ozone (O_3) is a greenhouse gas in the UT, but there is uncertainty in the balance of O_3 sources (transport versus chemistry) and chemistry of O_3 precursors—especially NO.
- Colder temperatures make thermally unstable peroxy nitrates, pernitric acid (HO₂NO₂) and $CH_3O_2NO_2$, important reservoirs for NO_x and RO_x in the UT, affecting O_3 chemistry.
- Deep Convective Cloud and Chemistry experiment (DC-3) provided direct measurements of RO_x , NO_x , the precursors and the reservoirs to test our understanding of this chemistry.

Measuring CH₃O₂NO₂ in the Deep Convective **Clouds and Chemistry Experiment**

CH₃O₂NO₂ was added to the Berkeley TD-LIF measurement suite^{1,2}. for the first time during DC-3, following the analysis of ARCTAS observations by Browne et al.³ who inferred $CH_3O_2NO_2$ is abundant in the upper troposphere where temperatures are below 240K indirectly interpreting deviations of observed " NO_2 " from photostationary state with NO as $CH_3O_2NO_2$. $CH_3O_2NO_2$ rapidly dissociates at room temperature ($\tau = 980$ ms at 25°C) making it essential to either correct NO_2 measurements for its presence or to interpret " NO_2 " measurements as the sum of NO₂ and CH₃O₂NO₂ if the residence time within the airplane prior to detection is long compared to this lifetime. The new $CH_3O_2NO_2$ channel was set to 60°C and the residence time in the NO₂ channel was reduced to 500 ms. We use the 60° C measurements to infer an interference in that channel that was a maximum of 10% of the NO2.

Other measurements made simultaneously on the DC-8 during DC-3 included NO₂, Σ PNs $(PAN + PPN + CH_3O_2NO_2 + HO_2NO_2 + ...)$, and ΣANs^2 , numerous organic molecules^{3,4,5}, NO_v^{6} , j-values⁷, OH⁸, and HO₂⁸.

2) shown in black

Fig. 1. shows the vertical profiles of $CH_3O_2NO_2$ for the entire DC-3 campaign. The blue line is the median profile for the entire mission, and the blue shaded area bounds the central 50%. The black line shows the limit of detection (S/N = 2) for one minute measurements, which depnds on the ambient NO₂ that is subtracted. Measurements made above $\sim 7 \text{ km}$ (or $\sim 255 \text{ K}$) are above the limit of detection.

Fig. 2. shows HO₂NO₂ and CH₃O₂NO₂ measurements. As HO₂NO₂ is also has a weak bond and short lifetime to thermal dissociation, we checked that our thermal design was capable of discriminating between the two molecules and detection only $CH_3O_2NO_2$. These observations confirm any interference is 5% of HO_2NO_2 or less.

Table 1. Methods used to measure other	speciated NO _y on the NASA DC8 during DC-3.		
NO _y Species	Method		
NO	Chemiluminescence	Ryer	
HO ₂ NO ₂	Chemical Ionization Mass Spectrometry	Kiı	
HNO ₃	Chemical Ionization Mass Spectrometry	Crou	

*Contact information: benjamin.a.nault@berkeley.edu or rccohen@berkeley.edu

During May and June, 2012, the NASA DC-8, along with two other planes, measured the chemical composition of air entraining (inflow) into deep convection, detraining (outflow) from deep convection, and aging from deep convection.

Storms were measured over Colorado, Oklahoma, Texas, and Alabama, and five flights were dedicated to the aging of the outflow from deep convection. The outflow occurred between 220 and 230 K.

After one day of aging, CH₃O₂NO₂ is almost as important of a NO_x sink as HNO₃. As the air subsides on subsequent days, NO_x is released more rapidly from the thermally unstable reservoir $(CH_3O_2NO_2)$ compared to the very slow release by reaction of OH with HNO₃.

NO_v Species During Outflow Aging

Table 2. Median concentrations, in pptv, of NO_v species measured on NASA DC8, at corresponding calculated ages of the air mass.

0 ^a	1200	40	28	260	110	24
0.5 ^b	790	107	50	277	160	78
1c	400	107	57	362	71	136

Acknowledgements

The authors would like to acknowledge NASA Grant Number NNX08AR13G and NSF GRFP under Grant No. DGE 1106400.

The authors would also like to acknowledge William Brune for the OH and HO₂ measurements, Bruce Anderson for aerosol surface area measurements, Eric Apel for OVOC measurements, and the DC-3 science

DC-3

The first ever direct observations of $CH_3O_2NO_2$ in the atmosphere were made during DC-3. • Measurements are above the limit of detection (S/N = 2) at temperatures less than 255 K. • There was minimal calculated interference from HO₂NO₂ (~5 %) with $CH_3O_2NO_2$

- measurements.

During the aging of the outflow:

- CH₃O₂NO₂ reaches 100-150 pptv after 1 day • $CH_3O_2NO_2$ makes up between 5 and 15% of the NO_v budget with a median of 10% in aged
- outflow.

Significant levels (> 500 pptv with a maximum of 880 pptv) of $CH_3O_2NO_2$ were observed on June 22, 2012, near isolated convection being influenced by a wildfire.

Conclusions

 $CH_3O_2NO_2$ is as abundant as HO_2NO_2 during the aging process making it equally effective as a temporary sink for RO_x and NO_x in convective outflow.

After one day of aging, $CH_3O_2NO_2$ is between 100 and 150 pptv, **about double** HO_2NO_2 . This corresponds to $CH_3O_2NO_2$ being ~10% of NO_v whereas HO_2NO_2 is less than 10% of NO_{v} . The calculated time since convection (age) shown at top is derived from the rate of conversion of NO_x to HNO_3 following Bertram et al., 2007¹¹.