Exploring the Differences in Deep Convective Transport Characteristics Between Quasi-Isolated Strong Convection and Mesoscale Convective Systems Using Seasonal WRF Simulations

Bigelbach, Brandon C¹, G. Mullendore¹, M. Starzec¹

¹University of North Dakota, Grand Forks, ND, USA

This research was funded through NSF Awards ATM-0918010 and EPS-0814442

Oral Presentation A21I-02

Motivations

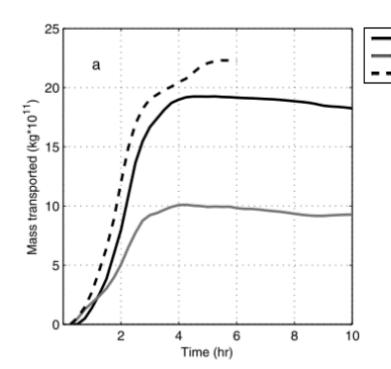
Mass Transport

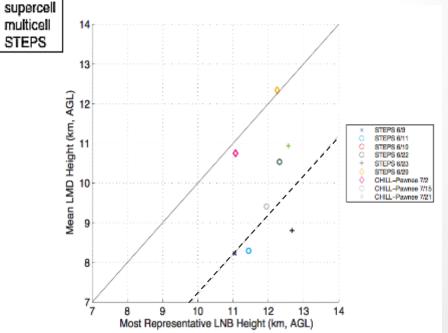
• Convection is an efficient and important mechanism by which the transport of chemical constituents from the planetary boundary layer (PBL) to the upper troposphere/lower stratosphere (UTLS) region occurs (e.g. Dickerson et al. 1987; Mullendore et al. 2005; Barth et al. 2007; Lawrence and Salzmann 2008)

Previous Studies

• Focus of study was on either a single type of convection, or general cumulus convection (e.g. Thompson et al. 1994; Stenchikov et al. 1996; Barth et al. 2007; Halland et al. 2009)

Basis and Purpose of Study


Differences in transport characteristics between a supercell and a multicell have been recognized (Mullendore et al. 2005; Mullendore et al. 2013).


STEPS

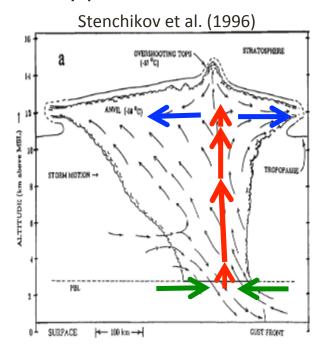
- In terms of Magnitude...
 - Mullendore et al. (2005)

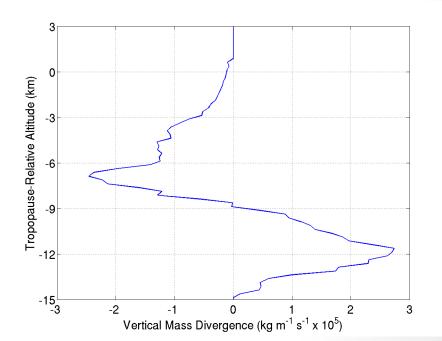
- And altitude...
 - Mullendore et al. (2013)

Model Setup

- Model
 - Weather Research and Forecasting model with chemistry (WRF-CHEM)
- Analysis Period
 - 15 31 May 2007 (17 days)
 - Shear zone convection
 - 01 13 July 2007 (13 days)
 - Sub-tropical warm sector convection
- Discretization
 - Vertical
 - Added resolution in UTLS
 - ~9-13 km
 - Equal 250 m spacing

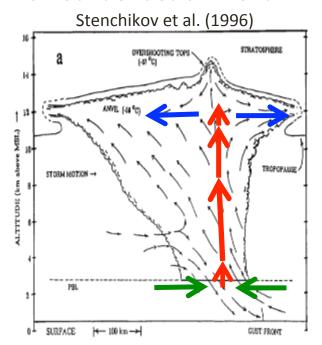
Thunderstorm Classification

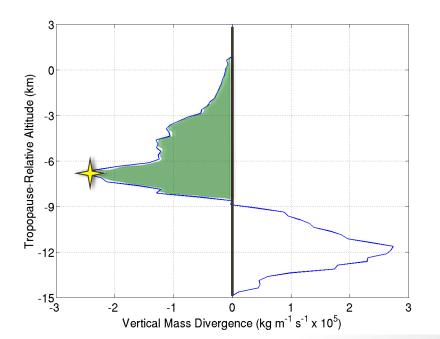

Green = Agrees with Schoen and Ashley (2011) **Red** = Determined from Testing


	Weak Convection (WC)	Quasi-Isolated Strong Convection (QISC)	Mesoscale Convective System (MCS)
Radar Reflectivity Characteristics	< 40 dBZ everywhere in object	≥ 40 dBZ at least 1 point in object	≥ 40 dBZ at least 1 point in object
Areal Characteristics (Reflect. > 0 dBZ)	Can be any size	< 7000 km²	≥ 7000 km²

Deep Convection and Analysis

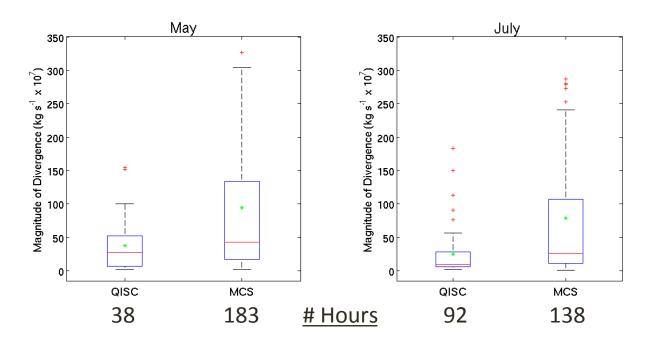
- Deep convection defined as $w \ge 2 \text{ m s}^{-1}$ at $z = 4 \text{ km AND } w \ge 5$ $m s^{-1} at z = 8 km$
- Vertical mass divergence $[\partial(\rho w)/\partial z]$ was calculated for each column of deep convection and columns were summed together (Mullendore et al. 2009).
 - Only positive vertical velocities were used



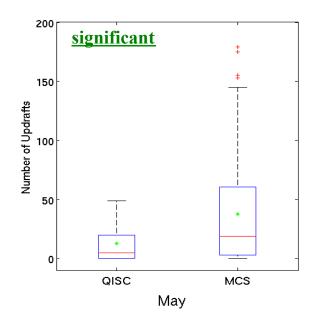


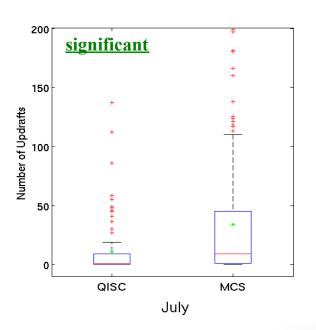
Deep Convection and Analysis

- Analyzed vertical convergence (horizontal divergence) for analysis
 - Level of Maximum Detrainment (LMD, Mullendore et al. 2009; 2013)
 determined from maximum vertical convergence
 - Calculated relative to NARR tropopause heights mapped onto analysis domain
 - Magnitude of the vertical convergence calculated as proxy for amount of detrainment



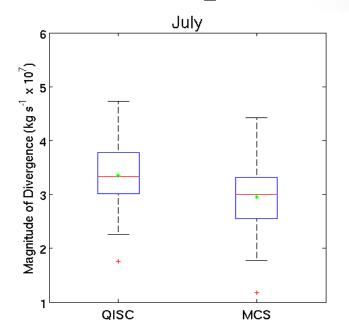
Transport Magnitude Per Object



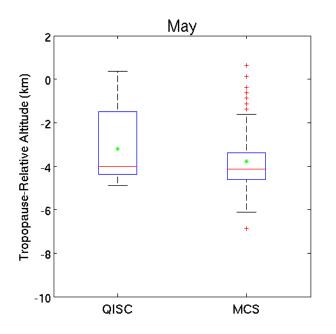

- Box and Whisker Distributions of magnitude
 - Each hour where QISC or MCS dominant represents 1 point in the plot
 - Green Asterisk Mean value
- For Both May and July:
 - MCS detrains statistically significantly more mass out of the updrafts per deeply convective complex than QISC

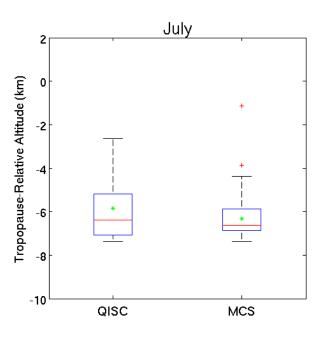
Number of Deeply Convective Updrafts

- Deep Convection Defined as:
 - $w \ge 2 \text{ m s}^{-1} \text{ at } z = 4 \text{ km AND } w \ge 5 \text{ m s}^{-1} \text{ at } z = 8 \text{ km}$
- There is a relationship between the amount of deep convective updrafts and the detrainment out of the updrafts per deeply convective storm complex



Transport Magnitude Per Updraft




- Magnitude of Detrainment Per Updraft
- For May:
 - QISC does not statistically significantly detrain more mass out of the updrafts per updraft than MCS
- For July:
 - QISC detrains statistically significantly more mass out of the updrafts per updraft than MCS

Transport Altitude (Tropopause-Relative)

- Due to difference in environment, tropopause height at least 2 km higher in July than in May
 - Could Lead to reason why July maxes at ~-2.5 km and May > 0 km
- In both May and July, the QISC LMD, relative to the altitude of the tropopause, is **statistically significantly** higher than that of the MCS

Results

- Summary of Results:
 - Differences are MCS QISC
 - Ratios are MCS / QISC

	Differences and ratios of mean values of transport characteristics between MCS and QISC regimes				
	Detrainment Per Deeply Convective Storm Complex	# of Deeply Convective Updrafts	Detrainment <i>Per</i> <i>Updraft</i>	Tropopause- Relative LMD Altitude	
May	2.4:1	2.9:1	0.9:1	-583 m	
July	3.1:1	3.1:1	0.8:1	-487 m	

Conclusions

- The MCS regime capable of detraining > 2 times the amount of mass out of updrafts per storm complex than QISC.
 - Due in part to significantly more updrafts in MCS's
- QISC updrafts, individually, are much stronger and more efficient transporters than MCS updrafts
 - Able to detrain more mass at a higher altitude relative to the tropopause
 - Better chance for QISC to have irreversible transport to the stratosphere than an MCS
- Objective classification of storms for deep convective transport studies important
 - Accounts for variability in overall transport budget due to different storm types
 - Not realized at global transport model scales (where convection parameterized)

