Connecting Soluble Trace Gas Vertical Distributions to Storm Properties

Mary C Barth

Megan M. Bela; Meghan Applegate; Alan Fried; Petter Weibring; Thomas F. Hanisco; Heather L. Arkinson; Eric C. Apel; Daniel W. O'Sullivan; Brian Heikes; Paul O. Wennberg; John Crounse; Jason M. St Clair; Athanasios Nenes; Milos Z. Markovic; Jeffrey L. Stith; Teresa L. Campos; Steven A. Rutledge; Brett Basarab; Brody Fuchs; Lawrence D. Carey; Anthony L. Bain; Michael I. Biggerstaff; Armin Wisthaler; Glenn S. Diskin; Pedro Campuzano-Jost; Thomas B. Ryerson; Frank M. Flocke; Sara Lance

Thanks to entire DC3 Science Team; NCAR/EOL for logistical support during DC3.

Thanks to NSF, NASA, DLR, NOAA, U. Oklahoma, U. Alabama-Huntsville for financial support.

Goals of the DC3 Field Campaign

- 1. To characterize thunderstorms and how they process chemical compounds that are ingested into the storm (transport, scavenging, lightning, production of NOx from lightning, chemistry)
- 2. To learn how the air that exits the storm in the upper troposphere (UT) changes chemically during the next day (chemical aging)

Additional topics: aerosols, halogens

Goal of this paper

Contrast scavenging of trace gases for different types of storms

Colorado: High shear, moderate CAPE environments and high cloud base (→ ice dominated)

Oklahoma/Texas: High shear, high CAPE environments; sometimes low shear

Alabama: low shear, moderate CAPE environments (air mass thunderstorms)

Air Mass Thunderstorm

High-Shear Thunderstorm

DC3 storms ranged from high-shear, high-CAPE to low-shear, low CAPE environments

Colorado: High shear, moderate CAPE environments and high cloud base (→ ice dominated)

Oklahoma/Texas: High shear, high CAPE environments; sometimes low shear

Alabama: low shear, moderate CAPE environments (air mass thunderstorms)

→ Generally true

Sounding Data: Oklahoma: C. Ziegler, T. Mansell; Colorado: W. Brown; Alabama: L. Carey; AND students for all 3 regions

DC3 storms ranged from high-shear, high-CAPE to low-shear, low CAPE environments

Colorado: High shear, moderate CAPE environments and high cloud base (→ ice dominated)

Oklahoma/Texas: High shear, high CAPE environments; sometimes low shear

Alabama: low shear, moderate CAPE environments (air mass thunderstorms)

→ Generally true

Sounding Data: Oklahoma: C. Ziegler, T. Mansell; Colorado: W. Brown; Alabama: L. Carey; AND students for all 3 regions

DC3 cases ranged from ordinary to severe thunderstorms

CAPE = 262 J/kg 0-6 km shear = 3 m/s CAPE = 2981 J/kg 0-6 km shear = 34 m/s

CAPE = 3113 J/kg 0-6 km shear = 37 m/s

DC3 cases ranged from ordinary to severe thunderstorms

Alabama Case, 21 May 2012 at 2023 UTC

Polarimetric Radar Reflectivity

Large quantity of hail and/or graupel particles found using the NCAR Particle Identification (PID)

DC3 cases ranged from ordinary to severe thunderstorms

2 storms examined in the Colorado 6 June case

CAPE = 2981 J/kg 0-6 km shear = 34 m/s

Colorado Case, Early Storm, 6 June 2012

Extensive region of hail using the NCAR Particle Identification (PID)

Colorado Case, Later Storm, 6 June 2012

Alabama versus Colorado Storm Structure

- All have graupel/hail, but Colorado storms have a larger amount
- Vertical velocities larger in Colorado storms

Convective Transport and Scavenging

DC3 Hypothesis:

Transport to near tropopause in high-shear storms

Transport throughout the troposphere in low-shear storms

Scavenging in Colorado storms would be less efficient

Scavenging in OK/TX and Alabama storms would be more efficient

Air Mass Thunderstorm

High-Shear Thunderstorm

Convective Transport of Passive Species

DC3 Hypothesis:

Transport to near tropopause in high-shear storms

Transport throughout troposphere in low-shear storms

DC-8 data: Glenn Diskin, Glenn Sachse, James Podolske (NASA)

GV data: Teresa Campos, Frank Flocke, Daniel Stechman, Carolyn Farris, and Melodye Rooney (NCAR)

Convective Transport of Passive Species

DC3 Hypothesis:

Transport to near tropopause in high-shear storms

Transport throughout troposphere in low-shear storms

- → Background data points are not very different than convective outflow
- → Also true for non-methane hydrocarbons, e.g. toluene

Convective Transport of H₂O₂

- H_2O_2 is a very soluble species ($K_H = 8x10^4$ M/atm)
- → Vertical profiles show substantial scavenging in Colorado storm
- → Early Colorado storm had a weak convective transport signal
 - may be due to entrainment

DC-8 H2O2 data: Paul Wennberg, John Crounse, Jason St. Clair (CIT)

GV H2O2 data: Dan O'Sullivan (USNA), Brian Heikes (URI)

Convective Transport of H₂O₂

DC3 Hypothesis:

Scavenging in Colorado storms would be less efficient Scavenging in OK/TX and Alabama storms would be more efficient

- \rightarrow H₂O₂ appears to be scavenged similarly in all storms
 - except, perhaps, the Oklahoma storm

Quantifying Scavenging Efficiency of Soluble Species

Storm	Туре	CH₃OOH		CH ₂ O		H ₂ O ₂		HNO ₃	
		СО	Toluene	СО	Toluene	СО	Toluene	СО	Toluene
Alabama	Low shear	0.67	0.10	0.84	0.40	0.65	1.0	0.32	1.0
Colorado 1	High shear	0.91	0.93	0.64	0.78	0.94	0.96	0.94	0.92
Colorado 2	High shear	0.75	0.87	0.43	0.72	0.94	0.96	0.94	1.0
Oklahoma	High shear	0.83	0.83	0.68	0.45	0.92	0.90	0.94	1.0

DC-8 CH₃OOH, H₂O₂, HNO₃ data: Paul Wennberg, John Crounse, Jason St. Clair (CIT)

GV CH₃OOH, H₂O₂ data: Dan O'Sullivan (USNA), Brian Heikes (URI)

DC-8 and GV CH2O data: Alan Fried, Jim Walega, Dirk Richter, Petter Weibring (U. Colorado)

DC-8 CH2O data: Tom Hanisco (NASA/GSFC), Heather Arkinson (U. Maryland)

GV HNO₃ data: Greg Huey, Dave Tanner (GaTech)

DC-8 data: Glenn Diskin, Glenn Sachse, James Podolske (NASA)

GV data: Teresa Campos, Frank Flocke, Daniel Stechman, Carolyn Farris, and Melodye Rooney (NCAR)

DC-8 Toluene data: Don Blake, Nicola Blake (U. California – Irvine)

GV Toluene data: Eric Apel, Rebecca Hornbrook, Alan Hills (NCAR), Dan Riemer (U. Miami)

Storm	Туре	CH₃OOH		C	CH ₂ O		H ₂ O ₂		HNO ₃	
		СО	Toluene	СО	Toluene	СО	Toluene	СО	Toluene	
Alabama	Low shear	0.67	0.10	0.84	0.40	0.65	1.0	0.32	1.0	
Colorado 1	High shear	0.91	0.93	0.64	0.78	().94	0.96	0.94	0.92	
Colorado 2	High shear	0.75	0.87	0.43	0.72	0.94	0.96	0.94	1.0	
Oklahoma	High shear	0.74	0.81	0.67	0.45	0.95	0.98	0.89	0. 90	

- CH₂O consistently has scattered results
- Alabama storm consistently has scattered results
- Alabama storm has less scavenging than high-shear storms
- Scavenging in the two Colorado storms is not the same

Storm	Туре	CH₃OOH		CH ₂ O		H ₂ O ₂		HNO ₃	
		СО	Toluene	СО	Toluene	СО	Toluene	СО	Toluene
Alabama	Low shear	0.67	0.10	0.84	0.40	0.65	1.0	0.32	1.0
Colorado 1	High shear	0.91	0.93	0.64	0.78	0.94	0.96	0.94	0.92
Colorado 2	High shear	0.75	0.87	0.43	0.72	0.94	0.96	0.94	1.0
Oklahoma	High shear	0.74	0.81	0.67	0.45	0.95	0.98	0.89	0. 90

- CH₂O consistently has scattered results
- Alabama storm consistently has scattered results
- Alabama storm has less scavenging than high-shear storms
- Scavenging in the two Colorado storms is not the same

Storm	Туре	CH₃OOH		CH ₂ O		H ₂ O ₂		HNO ₃	
		СО	Toluene	СО	Toluene	СО	Toluene	СО	Toluene
Alabama	Low shear	0.67	0.10	0.84	0.40	0.65	1.0	0.32	1.0
Colorado 1	High shear	0.91	0.93	0.64	0.78	0.94	0.96	0.94	0.92
Colorado 2	High shear	0.75	0.87	0.43	0.72	0.94	0.96	0.94	1.0
Oklahoma	High shear	0.74	0.81	0.67	0.45	0.95	0.98	0.89	0. 90

- CH₂O consistently has scattered results
- Alabama storm consistently has scattered results
- Alabama storm has less scavenging than high-shear storms
- Scavenging in the two Colorado storms is not the same

Storm	Туре	CH₃OOH		C	CH ₂ O		H ₂ O ₂		HNO ₃	
		СО	Toluene	СО	Toluene	СО	Toluene	СО	Toluene	
Alabama	Low shear	0.67	0.10	0.84	0.40	0.65	1.0	0.32	1.0	
Colorado 1	High shear	0.91	0.93	0.64	0.78	0.94	0.96	0.94	0.92	
Colorado 2	High shear	0.75	0.87	0.43	0.72	0.94	0.96	0.94	1.0	
Oklahoma	High shear	0.74	0.81	0.67	0.45	0.95	0.98	0.89	0. 90	

- CH₂O consistently has scattered results
- Alabama storm consistently has scattered results
- Alabama storm has less scavenging than high-shear storms
- Scavenging in the two Colorado storms is not the same

- This work: more scavenging in high shear storms, less in low-shear,
 Alabama case
 - Mixing of free tropospheric air into storm is a critical factor
 - Recommend a multi-component model
- Uncertainties
 - Photochemistry occurring along air parcel trajectory
 - Should strive to connect inflow points measured to outflow points measured using radar wind observations
- **Bela et al. poster** (Thursday) shows scavenging results from cloud-resolving model simulations
- Fried et al. poster (Thursday) shows scavenging efficiency estimates for May 29 case using a 3-component model and considering photochemistry

Convective Transport and Scavenging in 3 DC3 Storms

- Pre-convective (background) UT air found to often be affected by previous day convection or biomass burning plumes
- Smaller (or younger) storms had a weak convective transport signal – may be due to entrainment
- Scavenging occurred more for high-shear storms, less for lowshear storm
- Next: Place scavenging into context of other storm parameters, e.g. amount of graupel or hail

