Climate Predictability (CPPA Sci & Impl Plan, Chapter 2)

E. Hugo Berbery, Siegfried Schubert, Dave Gutzler, Wayne Higgins

• Deliverables

Chapter 2: Climate Predictability

To develop and demonstrate a capability to make reliable monthly to seasonal predictions of precipitation and land-surface hydrologic variables through improved understanding and representation of ocean, land, and atmospheric processes in climate prediction models

Chapter 2: Climate Predictability

- Understand the contributions of land and ocean memory
- Modeling of coupled ocean-atmosphere processes
- Modeling of coupled land-atmosphere processes
- Atmospheric response to boundary forcings
- Modeling and prediction of precipitation processes (hydroclimatological focus)

Outline

- Chapter 2: Phenomena and research paths
- Warm season: The American monsoons
- Droughts
- Cold season hydroclimate
- Extreme weather
- Some predictability issues

Climate Predictability on Intraseasonal to Interannual Time Scales

Slowly evolving lower boundaries: Sea surface Temperatures

WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

Slowly evolving lower boundaries: Soil moisture

Hotspots

Models - Koster et al. 2004

NARR - Luo et al. 2006

Process studies

LSA Interactions Soil moisture persistence "Predictive skill"

Assimilation of land data

Time series of Pobs and Pmod Area averaged over the Columbia basin

Eta model operational forecasts

Cold Season hydroclimate

- SSTs
- Topography
- Snow

Mean Bias

Inter-ENSO event variability

We need to understand and exploit the variable response to tropical SST forcings A long-term deliverable from CPPA

Warm Season Hydroclimate

- The North American Monsoon NAME
- The South American Monsoon MESA

NAME and MESA and internationally coordinated, joint CLIVAR-GEWEX process study programs aimed at improving warm season precipitation forecasts over the America

NORTH AMERICAN MONSOON EXPERIMENT (NAME)

HYPOTHESIS:

The NAMS provides a physical basis for determining the degree of predictability of warm season precipitation over the region.

Monsoon Prediction

CPC monthly/seasonal outlook issued May 2006

Observed patterns

30-day accumulation ending 14 Aug 06 [from CPC]

A very strong monsoon so far, especially in SW United States Was there antecedent guidance? A <u>long-term</u> deliverable from CPPA

MONSOON EXPERIMENT IN SOUTH AMERICA (MESA)

An internationally coordinated, joint CLIVAR -GEWEX program aimed at providing:

- 1. A better understanding of the South American monsoon system and its *variability*,
- 2. A better understanding of <u>the role of that system in the</u> <u>global water cycle</u>
- 3. Improved observational data sets, and
- 4. Improved simulation and <u>prediction of the monsoon and</u> <u>regional water resources</u>

Regions with lower, medium and higher predictability at seasonal and interannual time scales (Source: J. Marengo, CPTEC/INPE).

Transition region – a necessary condition to have hotspots

(Estimated from NCEP-NCAR Global Reanalysis)

Collini et al 2006

Droughts

Annual Mean Precipitation Responses

Major drought

Wet conditions

mm/day

Warm Pacific, Warm Atlantic CW

CC Cold Pacific, Cold Atlantic Cold Pacific, Warm Atlantic WC Warm Pacific, Cold Atlantic

Impact of Soil Moisture Feedbacks on JJA Precipitation

CW

CW

Interactive soil moisture

Extreme events

Are extreme events like the July heat wave potentially predictable? A long-term deliverable from CPPA

Implementation for Climate Predictability

- Atmospheric response to boundary conditions
- Numerical experimentation to explore relative contributions of oceanic and land processes to predictability
- Empirical studies to examine complex interactions between SSTs, land processes, and rainfall anomalies
- Coupling between atmosphere, land and ocean
- Empirical and modeling (global coupled models and regional models) studies to explore mechanisms linking land and ocean variability in the Pan American region
- Improve representation of land surface effects
- Improve representation of air-sea-land interaction processes

Climate Predictability on Intraseasonal to Interannual Time Scales Science Background

- Science Objectives and Priorities
 - Drought predictability
 - Predictability of the American monsoons
 - Extreme weather events
 - Cold season hydro-climate predictability
- Implementation Strategies
 - The role of atmosphere-land interactions
 - The role of atmosphere-ocean interactions
 - The role of land-ocean interactions (monsoon systems)
 - The role of atmospheric dynamics orographic systems, teleconnections, MJO, LLJs, weather
 - Predicting extremes (droughts, floods, hurricanes, blizzards)
- critical gaps diurnal cycle, annual cycle, monsoon onset, land- atmosphere coupling strength, roles of the different ocean basins, weather/climate link, simulating key teleconnections including impact of MJO, impact of global warming
- Observations
- Process studies, field studies
- Deliverables