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1 Motivation

* Why do we need to know about 10?
— |0 modifies the atmosphere’s oxidative capacity
— |O catalytically destroys ozone
— |0 may impact the creation and growth of aerosol particles

e What don’t we know about 10?

— Source chemistry and atmospheric lifetime
* Organic biological/photochemical vs inorganic sources
* Multiphase chemistry in aerosols
* Aerosol loss vs Aerosol recycling

— Vertical and global distribution
— Only upper limits are known in the lower stratosphere

— The magnitude of its importance for atmospheric
chemistry and climate



1 Motivation — Uncertainty in stratospheric IO MR

Wennberg et al. 1997  Ground DOAS (Direct Sun) 0.2 ppt (0-0.3ppt)

Pundt et al. 1998 Balloon DOAS (Direct Sun) <0.1 ppt
Butz et al. 2006 Balloon DOAS (Direct Sun) <0.1 ppt

IO mixing ratios in the lower stratosphere are low.

Current knowledge of |0 in the stratosphere is limited mostly to
upper limits.

Previous measurements are limited to Direct Sun DOAS gathering
most or all information at high Solar Zenith Angle (sunrise and sunset)



1 Motivation — 10 over the Pacific

Schonhardt et al., ACP 2008
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— CONTRAST study area is
expected to be an IO minimum



2 Instrumentation - CU AMAX-DOAS

Colorado University-Airborne Multi-AXis
Differential Optical Absorption Spectroscopy

telescope pylon

AN

Volkamer et al., 2009, SPIE
Coburn et al., 2011, AMT
Baidar et al., 2013, AMT
Dix et al., 2013, PNAS




2 DOAS detection of IO

IO (5.10e+011)

detection




3 CONTRAST — RF15 Parameterization derived Profile

Parameterization is
faster than inversion
but has larger errors

Higher and lower
altitudes are
irretrievable due to
cloud effects
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3 CONTRAST - Comparison with TORERO

TORERO Northern Tropical Ocean Mean
== TORERO Southern Tropical Ocean Mean
—#— TORERO Souther Mid-Latitude Ocean Mean
TORERO Southern Mid-Latitude Coastal Mean
— COMTRAST RF15 Takeoff using Parameterization
(Mean Latitude 14.15M)
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3 CONTRAST - Overview of Data Retrieval

CONTRAST RFs
flight tracks

[CIUEAST HFs
flight tracks
Sun too low for retrieval
<iear/Minor Clouds. easily retrieved
Major Clouds, difficult to retrieve
Heavy Clouds, not retrievable
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3 CONTRAST - Cloud Sensitivity
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3 CONTRAST — Comparison with CamCHEM
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3 CONTRAST — RF15 Jet Crossing
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Conclusions & Outlook

* |0 is detected and quantified in the LS
- First detection of 10 in the stratosphere by limb measurements
- AMAX measurements qualitatively match models but
show more 10 overall in the LS (up to a factor 2)

- A more direct comparison with model requires design of an
instrument mask

e FT-10 in the NH over the Western Pacific is similar to the levels that
had been observed in the SH over the Eastern Pacific (TORERO)

* Understanding Stratospheric IO:
- Further collaboration with CamCHEM team
* Process Level Understanding:
- Use TORERO and CONTRAST observations of |0, organoiodine,

and aerosols to better constrain iodine chemistry (WRF-Chem,
GEOS-Chem)
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