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For process studies involving chemical concentrations, cloud
formation, and dynamical interactions in the TTL

Trajectories can help determine sources and path-
dependent processes
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However, errors in the winds used to calculate air-parcel
trajectories cause substantial uncertainties
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It’s convenient to categorize wind variations by scale
Large scales are better sampled by observations than small scales

Large scales (> 1000(0) km, 7 km, 1 month)

* Reliably represented in analysis data

Mid-range scales

* The problem child - Difficult to characterize

* Marginally resolved by observing networks

* Important for weather

( Require extensive sensitivity tests to characterize j

4 )
Small scales (< 100 km, 2km, 1 d) We will be simulating small-

scale fluctuations in trajectory
calculations with a multi-
fractal random walk

* Completely unresolved
* No hope of accurately reproducing
( Apparently have robust statistical properties )




Some statistics are not very resolution sensitive
(Errors generated by small scale fluctuations cancel in large ensembles)
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Some statistics are sensitive to resolution
Unresolved variations lead to trajectory dispersion away from the actual
parcel path
Distributions of lon, lat, and pres differences at 1,2,4,8,16 d
12 km v 2 deg: PO = 100 mb, 300 mb encounter, Winter 2007

Longitude (deg)

At 16 d trajectories have dispersed:

~ 20° in longitude
~10° in latitude
~ 25 mb in pressure

-60 -40 -20 0 20 40 60

_Latitude (deg) _ Based solely on resolution

-30 -20 -10 0 10 20 30

Pressure (mb)

-100 -50 0 50 100



What can we do about this problem?

We can’t recreate actual small scale variations but we can
estimate the associated uncertainties

We can determine which statistics are more likely robust

We can develop more efficient (and robust) trajectory
strategies

— Choosing optimal ensembles

— Choosing optimal ‘resolved’ scales



The Overall Strategy

Characterize small-scale wind variability with observations

~N

Airborne observations
In situ observations
Measure small-scale variations (1 - 20 Hz; 200 — 10 m)
Small sample size
Must filter affect of plane’s motion
Flight path is 1 dimensional (a mixture of 4 Eulerian dimensions)
Samples a limited region of phase space j

High resolution analysis data
*  Agree with airborne observations?
*  Find systematic behavior

*  Large sample size
* No direct observations — but based on equations of motions

*  Affected by assimilation shock
\° Affected by damping at smallest scales

Examine the impact on trajectory calculations

* Create random small-scale deviations to resolved flow
* Perform large ensembles to understand uncertainties




Sample zonal wind variations

Total zonal wind
Smoothed (resolved)

This is what we want to
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Why multi-fractals?

 Complex systems (non-linear, high order) like the atmosphere
self-organize into structures that are best (so far) described
with multi-fractals



ATTREX data: zonal wind — are these data multifractal?
13 flights; Winter 2013, 2014

Difference spectrum: Exponent = -1.31 Deviation spectrum

uwnd Exponent: -2.63
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Multi-fractal random walk

multiFractal Exponent: -2.62 Difference spectrum: Exponent = -1.74 Deviation spectrum
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Separating horizontal and vertical components
Effective power spectrum exponents (6)

From individual flights (11)
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Summary
Simulating deviations from resolved flow
What we want to know

« We want to know wind deviations du’ as functions of Ax, Ay, Az, At
— At is one time step
« We want a ‘local’ measure of 6u’

« We want to know the uncertainty of 6u’



Summary
Issues with obtaining relevant statistics from ATTREX data

With ATTREX data we have 6u’ as a function of Ar
— Where Ar is a mixture of Ax, Ay, Az, At

ou’ is different dependencies on Ax, Ay, Az, At
— How do we separate them?

(Related question) How do we account for the motion of the
aircraft from the statistics?

— How about measurement error?



Two analysis components
Conclusions

e Examine statistics of du’

Statistics of 6u have a power law dependence on Ar
We can compare Ar based statistics with those in high resolution ECMWEF data
* Then use ECMWF for the remainder of the analysis
* Use sensitivity testing to account for uncertainties
Ax dependence dominates du (as it does for trajectories)
This allows us to model 6u’ based on resolved variance
*  We know the variance of the deviations (as functions of Ar
* Model with a multifractal random walk

We can examine the ratio of ‘mid-scale’ variance to small-scale variance to
determine the uncertainty of our variance estimates

* How to separate dependencies
— Flight irregularities (dips) don’t hinder the analysis, they help

By providing a better sample of phase space
We would like to see greater variations in flight paths

— So far, we have had some success in separating Ax, Az
— Atis problematic — too closely related to Ax

Ax=v At



Conclusions

We are developing simulations of small scale fluctuations to better
understand trajectory uncertainties

We are using small samples of observed small scale fluctuations in
airborne data to understand large samples of model-derived small-scale
fluctuations in analysis data (not shown here)

Unlike other studies (e.g., Lovejoy, Tuck, and Schertzer) — our analysis
benefits from erratic flight paths (i.e., dips)

— But still has substantial sampling issues (in phase space)



