

Chemical Forecasts and Field Modeling

Ross Salawitch, Dan Anderson, Elliot Atlas, John Bergman, Rafael Fernandez-Cullen, Tom Hanisco, Neil Harris, Cameron Homeyer, Shawn Honomichl, Doug Kinnison, Jean-Francois Lamarque, Qing Liang, Julie Nicely, Laura Pan, Alfonso Saiz-Lopez, Simone Tilmes, Glenn Wolfe and many others ©

23 Oct 2013

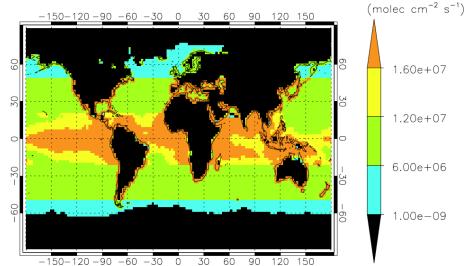
Guam, Jan-Feb 2014

Source: Doug Kinnison

NCAR CESM CAM-CHEM

- Global Chemistry-Climate Model
- 1.9° (lat) x 2.5° (lon) horizontal resolution
- 26 vertical levels (surface to ~ 4 hPa)
 Lamarque et al., Geosci. Mod. Dev., 2012

Tropospheric Halogen Chemistry


Halogenated sources from the ocean.

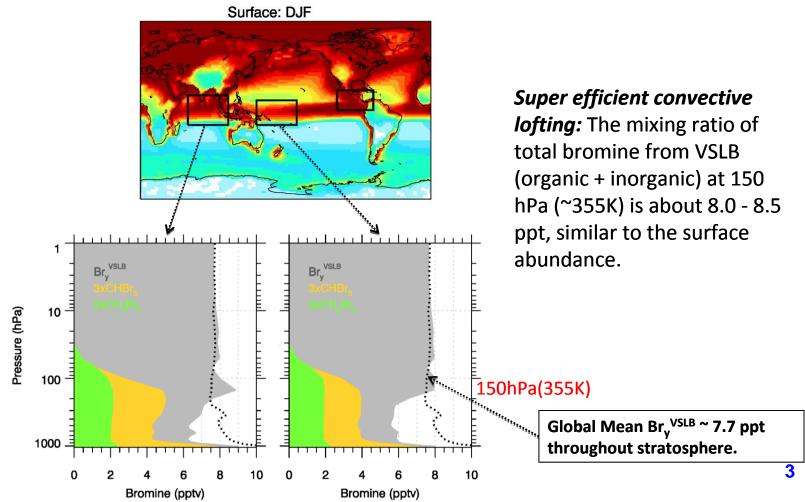
- Emissions following Chl-a over tropics
- Catalytic release from sea-salt
- Do NOT have polar emission processes

Chemical Processes

- Photochemistry (CI, Br, and I)
- Dry / wet deposition
- 9 Additional vsl Organic species included.
- 160 species, 427 reactions

CHBr₃ Flux in CAM-Chem

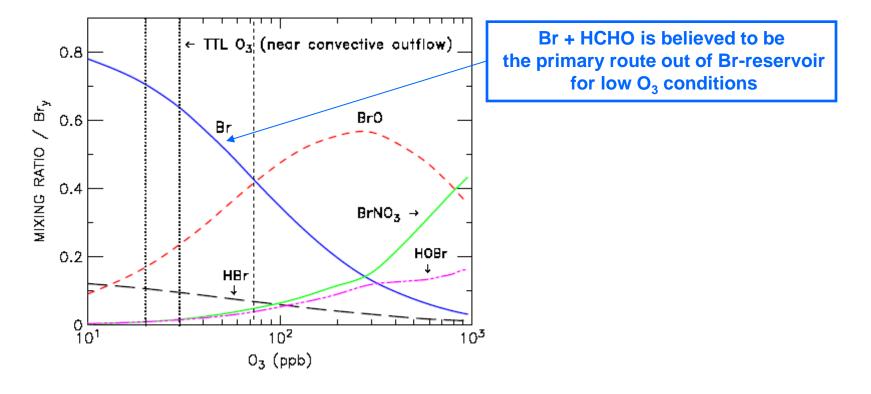
Source gas	Global annual flux (Gg yr^{-1})		Lifetime
	This study	Literature	(this study)
CHBr3	533	400ª, 595 ^b , 448 ^d	17 days
CH ₂ Br ₂	67.3	113 ^c , 62 ^d	130 days
CH ₂ BrCl	10.0	6.8 ^c	145 days
CHBr ₂ C1	19.7	23 ^c	56 days
CHBrCl ₂	22.6	16 ^c	46 days
CH ₃ Br*	climatology	131 ^c	1.6 yr ^g
CH ₃ I**	303	304 ^e	5 days
CH ₂ IC1	234	236 ^f	8 h
CH ₂ IBr	87.3	87 ^f	2.5h
CH_2I_2	116	116 ^f	7 min


Total Bromine: 632 Gg Br yr⁻¹ Total Iodine: 600 Gg I yr⁻¹

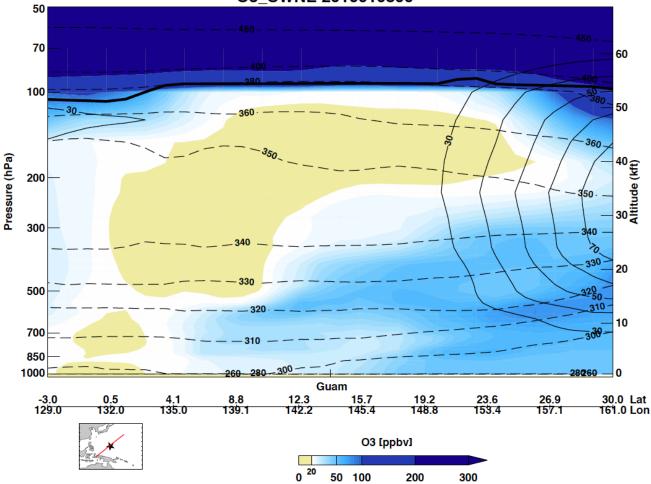
Guam, Jan-Feb 2014

Source: Qing Liang

Prior obs & modeling: SGI (source gas injection) of Br_y is probably 5 to 7 ppt


Prior obs & modeling: PGI (product gas injection) of Br_y highly uncertain: depends on efficiency of aerosol uptake and washout versus het chem release of labile bromine and strength of convection (Q. Liang talk)

Guam, Jan-Feb 2014


Prior obs & modeling: SGI (source gas injection) of Br_v is probably 5 to 7 ppt

Prior obs & modeling: PGI (product gas injection) of Br_y highly uncertain: depends on efficiency of aerosol uptake and washout versus het chem release of labile bromine and strength of convection (Q. Liang talk)

Example SW-NE cross section from SD-WACCM

O3_SWNE 2010010800

Guam, Jan-Feb 2014

CONTRAST

Chemical Forecast Plan:

- NCAR CESM CAM-CHEM forecast simulations to occur in Boulder
- 3 day forecasts will be available every ~24 hrs using GEOS5 met fields
- forecasting will begin with ferry flights
- domain-wide plots to be generated via script
- curtain plots along candidate flight trajectories possible: probably implemented by folks in Guam providing ASCII file with flight coordinates to server in Boulder, with plots generated in Boulder
- at this time we are not planning to transfer model files to Guam
- besides O₃, we intend to examine fields of:
 - H₂O, CH₄, CO
 - 10 VSLs listed on slide 5 plus a few select ratios
 - OH, HO₂, HCHO, NO, NO₂, BrO, Br/BrO, IO (daytime active species)
 - HBr, HOBr, BrNO₃, BrCl (dawn/dusk flights)

Guam, Jan-Feb 2014

A chemical modeler's / co-mission scientist wish list ©

Class 1	O ₃	
Class 2	CO, $H_2O \& CH_4$ C H_2Br_2 , CHB r_3 , C H_3I , etc NO _x , OH, HO ₂ , HCHO	
Class 3	BrO, BrO/Br _y , IO : daytime flights HBr, HOBr, BrNO ₃ , BrCl : dawn/dusk flights Non-methane precursors of HO _x & HCHO (H ₂ O ₂ , acetone, isoprene, ethane, etc)	

Class 1 ⇒ as many vetted models as possible Class 2 ⇒ multiple models very helpful Class 3 ⇒ at least one model

Guam, Jan-Feb 2014

Source: Neil Harris

Near Real Time TOMCAT/SLIMCAT Model Simulations

Hannah Mantle, Ryan Hossaini, Martyn Chipperfield

University of Leeds, UK

- Forced by ECMWF operational analyses. Available within 1 day of analysis time.
- Model resolution up to e.g. 1° x 1°.

CONTRAST

- Run could include 'full ' chemistry (stratosphere/troposphere).
- Can include tracers for different emission fields (e.g. 4 different CHBr₃ emission datasets).
- Can provide sample at stations and along flight tracks for 'first look' comparisons.

Can set up web page. See example from SHIVA campaign: www.see.leeds.ac.uk/slimcat http://homepages.see.leeds.ac.uk/~earrh/SHIVA_SITE/

Guam, Jan-Feb 2014

Other possible sources of forecast information:

MACC: Monitoring atmospheric composition and climate http://www.gmes-atmosphere.eu Standard products: O₃, CO, NO_x, HCHO, and SO₂ Surface, 850, 500, 300, and 30 hPa

> Field campaign support available upon request http://www.gmes-atmosphere.eu/services/aqac/campaign_support

D-AQ: Total AOD, Dust, Sea-Salt, Sulphate, Black Carbon, Organic Matter TRAQA: Dust, Black Carbon, tagged CO (South Asia, W. Europe, E. Europe N. Africa, Europe Biomass-burning)

MOZART-4 MOPITT

http://www.acd.ucar.edu/acresp/forecast Standard products: O₃, CO, tagged CO, NO_x, and PAN Surface, 4 km, 10 km, and column CO tags: fires, NA, Europe, India, E. Asia

Output routinely provided on line Tool developed for air pollution applications; the higher in altitude the more the product is influenced by climatology

Other possible sources of forecast information:

RAQMS: Real Time Air Quality Modeling System http://raqms-ops.ssec.wisc.edu Standard products: O₃, CO, H2O, DMS, HCHO, Aerosol Extinction Surface, 3, 6, and 12 km

5 day 1x1 degree global forecasts

Will archive:

- transported stratospheric & tropospheric chemical species, radicals (OH, BrO, NO, NO₂, etc..) and speciated (GOCART) aerosol wet/dry mass and extinction.
- dynamical quantities (u,v,t,z,p,pv) &
- physics (convective cloud mass flux, cloud optical depth, large-scale and convective precip).

Guam, Jan-Feb 2014

CONTRAST

Box Modeling Plan:

- Julie & Tim will be conducting box model simulations along the GV flight track in the field, with a focus on OH
- Glen & Dan will also be conducting box model simulations along the GV track in the field, with a focus on HCHO
- box modeling by others encouraged, either during or after deployment !
- box modeling requires a suite of GV measurements as inputs
- in my prior life as stratospheric modeler, we could used tracer/tracer relations to fill in gaps until data became available
- data gaps not easily filled in the tropical troposphere: modelers must clearly communicate to instrument team which observations are needed as input to various box models

Initial list: O_3 , H_2O , CH_4 , CO, NO, NO_2 , C_2H_6 , C_3H_8 , C_5H_8 , C_2H_2O , C_3H_6O , J_{O1D} , J_{NO2} , Aerosol Surface Area

NRT access to CHBr₃, CH₂Br₂, and CH₃I also very important