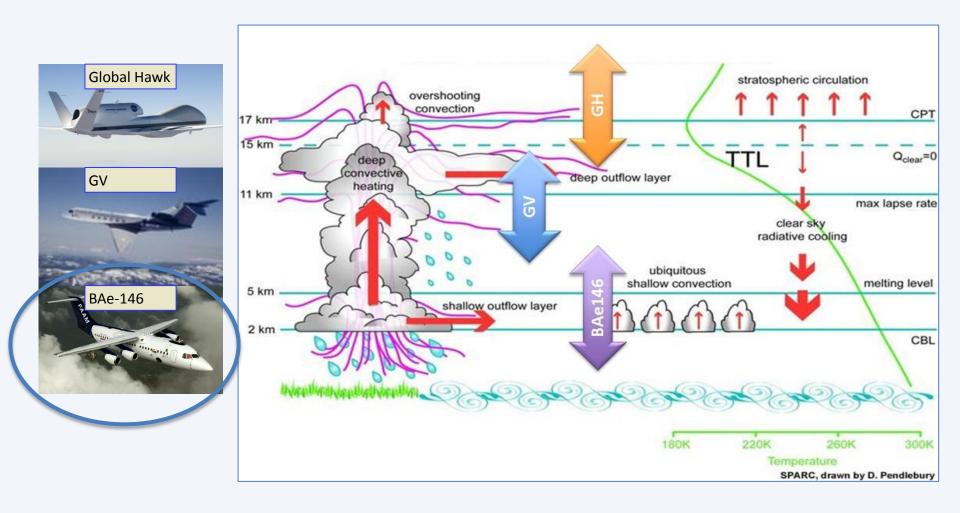
CAST - Coordinated Airborne Studies in the Tropics


- Field measurements in Jan/Feb 2014
 - FAAM 146 flight plans
 - FAAM 146 instruments
 - Flight planning tools
 - Ground deployment
- Modelling (mainly post-campaign)
- Instrument development

Neil Harris Boulder, Oct 21-25 2013

CAST - Coordinated Airborne Studies in the Tropics

Field measurements in Jan/Feb 2014

CAST flight plans - Jan-Feb 2014

AIMS

- Provide comprehensive observations in lower troposphere over W. Pacific Z < 6 km; 135-160°E; 0-15°N
- 2. Measure halocarbon abundances in boundary layer in shallow regions
- 2. Concentrate on atmospheric tracers and halogen compounds
- 3. Use these measurements as representative of air in in-flow to convection measured at higher altitudes by GV and GH

BAe-146 Operational Structure

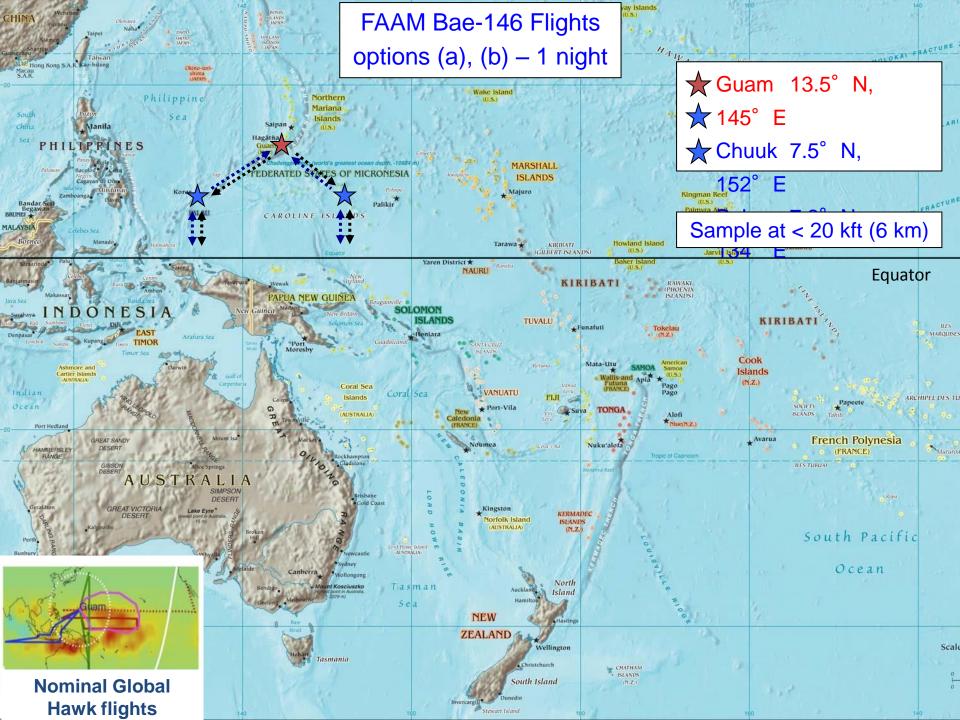
CAST scientists:

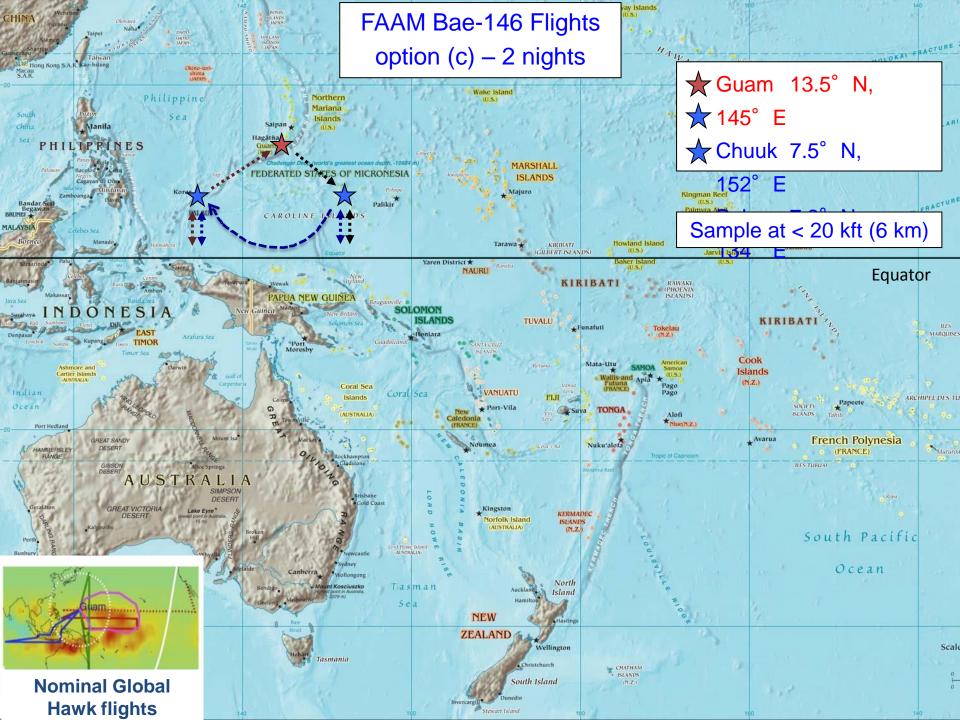
 PI – Neil Harris
 Mission scientists – James Lee, Lucy Carpenter, Mat Evans, John Pyle, Paul Palmer, Grant Allen

FAAM – campaign operations:

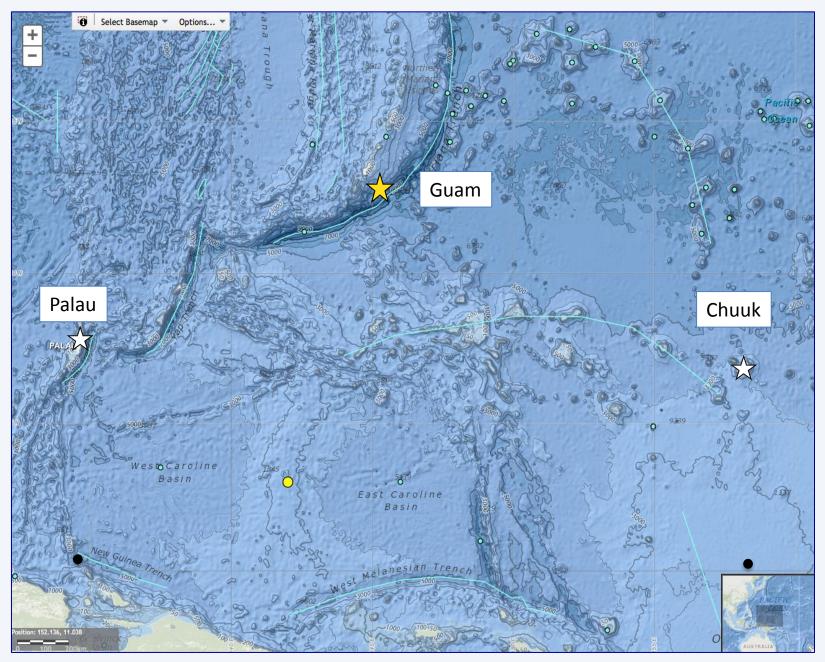
Campaign manager – Maureen Smith

DirectFlight – aircraft operations:

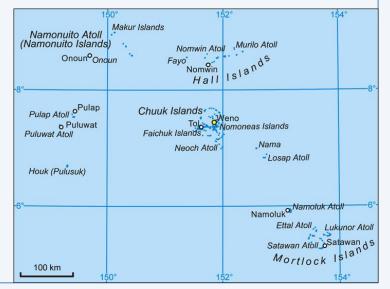

Project manager –Peter ChappellChief Pilot -Finbarre Brennan

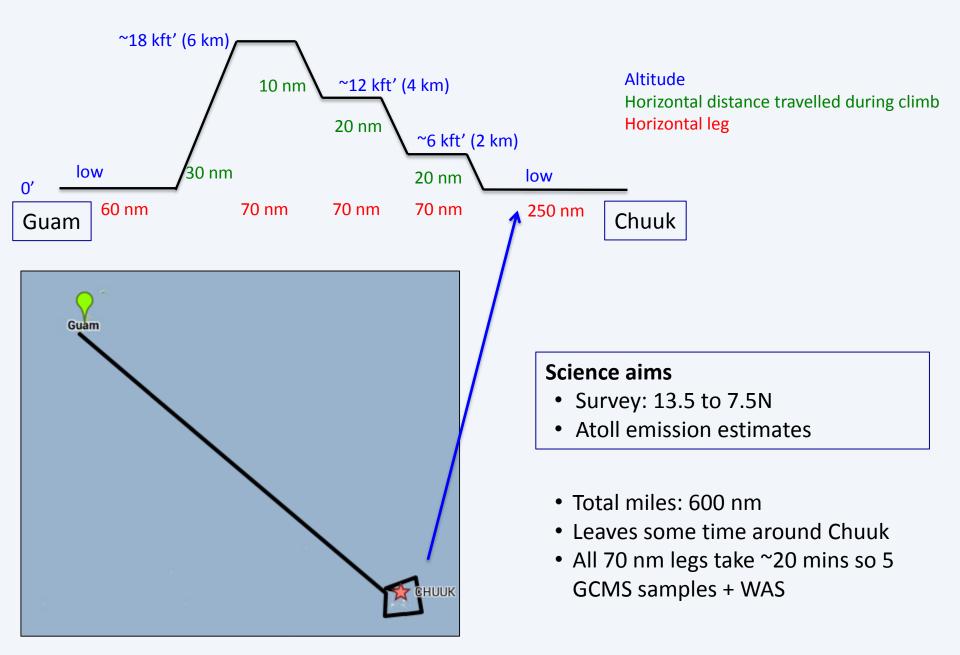

CAST : BAe-146 Payload

Observation	Instrument	Investigator	Meas. Synergy
0 ₃	TE49C	FAAM	GH, GV
H ₂ O Vapor	General Eastern 1011 / Buck CR2	FAAM	GH, GV
СО	Aerolaser 5002 FAAM		GH, GV
CO ₂ , CH ₄	CO ₂ , CH ₄ Los Gatos FAAM / Baugitte + Manchester / Gallagher		GH, GV
N ₂ O, H ₂ O	N ₂ O, H ₂ O Aerodyne QCLAS		GH
VSL halocarbons ¹ Agilent GC-MS / Markes Dual TD		York / Carpenter	GH, GV
NMHC, small OVOC, DMS ² WAS		York / Carpenter	GH, GV
NO, NO ₂ Air Quality Designs		FAAM + York / Lee	BAe
BrO, other ³ (in situ) CIMS		Manchester / Percival	GV
IO, I ₂ , OIO (In situ) BBCEAS		Cambridge / Jones	None
Black carbon SP-2		Manchester / Gallagher	None
Aerosol PCASP (Core FAAM)		Manchester/All	GH, GV
Winds/Turbulence/Met AIMMS-20 (Core FAAM)		Manchester/Vaughan	GH, GV

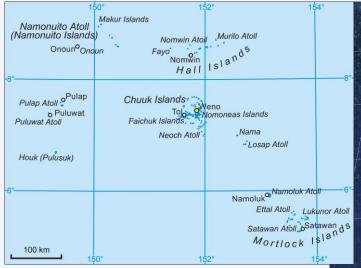

- 1. $CHBr_3$, CH_2Br_2 , $CHBr_2Cl$, CH_3I , CH_2BrCl , $CHBrCl_2$, C_2H_5I , CH_2ICl , CH_2IBr , CH_2I_2 , CH_2Cl_2 , $CHCl_3$
- 1. C1-C6, ????
- HCOOH (formic acid), HCN, CINO₂, HNO₃, N₂O₅, CH₃COOH (Acetic Acid), CH₃CH₂COOH (propanoic acid), CH₃CH₂CH₂COOH (butanoic acid)

Aircraft dates				
Jan 8:	depart UK			
Jan 11:	arrive Guam			
Jan 13 – Feb 7:	operational			
Feb 9:	depart Guam			
Feb 12:	arrive UK			

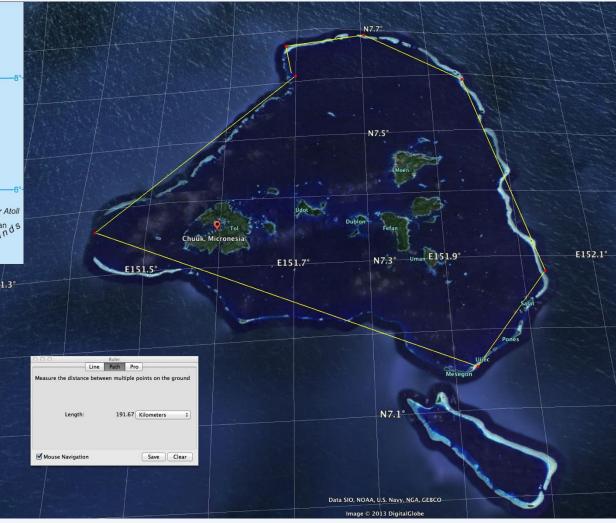

Ocean depth as predictor for VSLS emission - overview


Ocean depth summary

- Guam: drops off steeply all round island
- Chuuk: 40 mile lagoon with max depth 300 ft; many little islands
- Palau: sharp drop off to E, shallower region to W
- Yap: several islands together between Palau and Guam
- Saipan/Tinian: similar except for one bay on NW side
- More islands/atolls on direct line from Chuuk to Palau (could be an option to S)



Guam → Chuuk



Guam → Chuuk

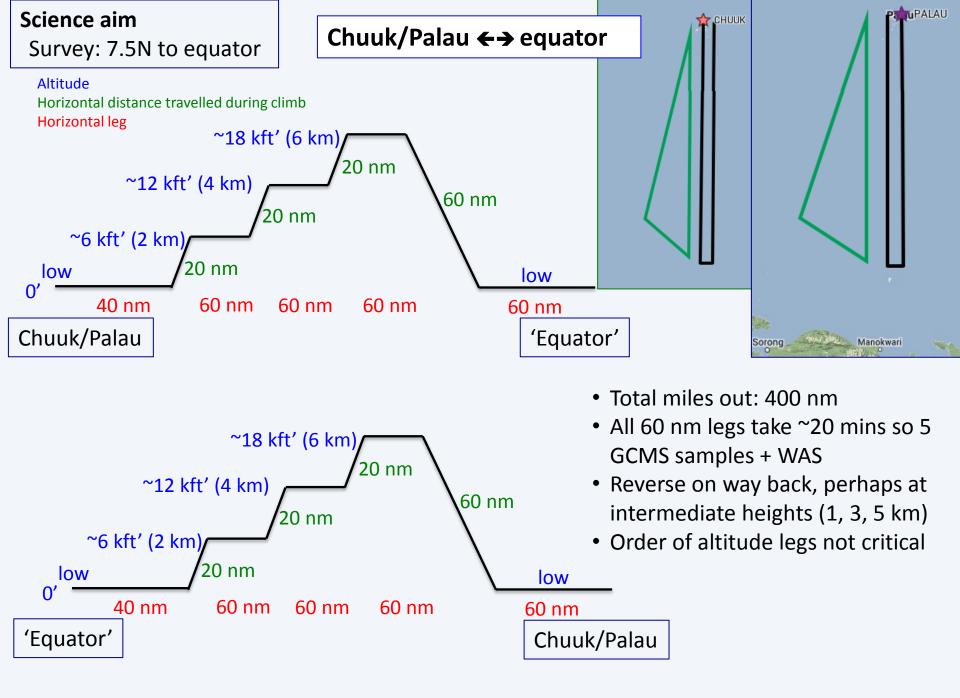
Circular route round whole atoll system would be ~200km or 105 nautical miles

What is optimal route? This plus a line through the centre?

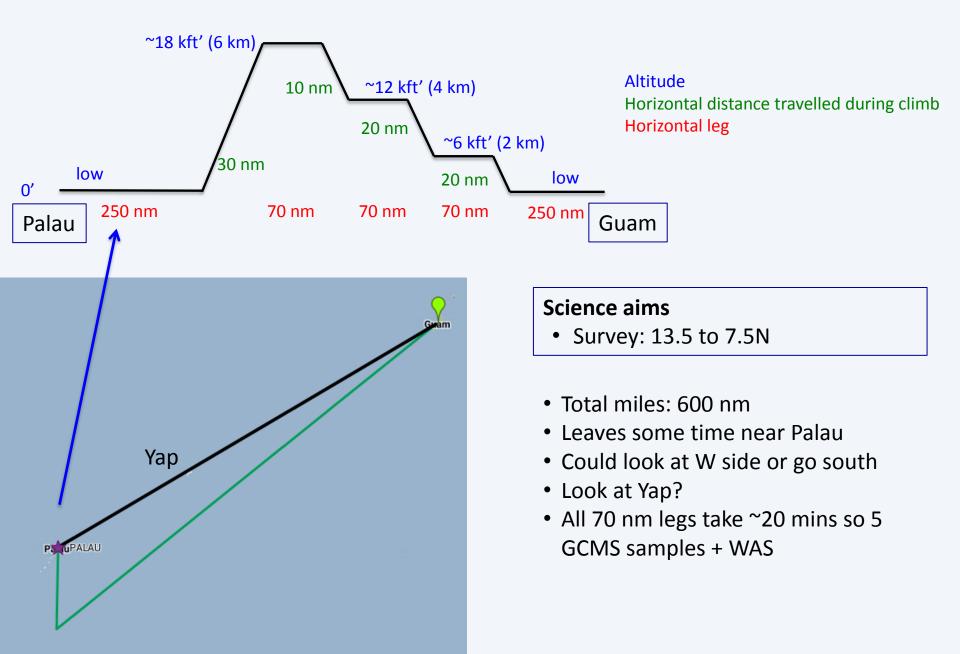
Flight planning

Option	Z	Flights	Flight hours	
(a) Guam/Chuuk/south:	equator	4	16	
(b) Guam/Palau/south:	equator	4	16	
(c) Guam/Chuuk/Palau/Guam:	2x 0°, 2°N	5	20	

NB NRPH guesses for flight hours (all 4 hrs)


80 flight hours for Guam

- → 3 x (a) + 2 x (b) (totalling 5)
- → 4 x (c)


➔ a mixture

am initiating request for 20 additional flight hours to allow one more sortie

Palau → Guam

CAST flight operations

BAE 146 operation – nominal flight times

Flights (a or b)

Day 1:

- 09:00 T/O Guam, 13:00 Land
 Chuuk or Palau
- 14:30 T/O Chuuk or Palau for flight to equator, 18:30 land Chuuk or Palau and overnight there

Day 2:

- 09:00 T/O Chuuk or Palau for flight to equator, 13:00 land Chuuk or Palau
- 14:30 T/O Chuuk or Palau, 18:30 land Guam

Dusk ~18:00. Flight times can be shifted to hit or miss dusk accordingly

Flight (c)

Day 1:

- 09:00 T/O Guam, 13:00 Land
 Chuuk or Palau
- 14:30 T/O Chuuk for flight to equator, 18:30 land Chuuk and overnight there

Day 2:

- 09:00 T/O Chuuk, 13:00 land
 Palau
- 14:30 T/O Palau for flight to Equator, 18:30 Land Palau

Day 3:

– 11:00 T/O Palau, 15:00 land
 Guam

BAe 146 operation - day before flight (from Guam)

- 09:00: Scientists meeting
 - Instrument updates
 - Met, chemical forecasting
 - Flight planning, joint discussions with CONTRAST / ATTREX
- Instrument operators chance to go to aircraft for maintenance, calibrations etc.
- 11:00: Mission scientists meet pilots / ops
- 12:00: File flight plan

BAe 146 operation - day of flight

- T/O -4 hours: Power to aircraft, instrument pre flight
- T/O -3 hours: Pilots and missions scientists meet in ops centre to finalize flightplan
- T/O -2hours: Pilots and missions scientists to airport
- T/O -1hours: Pre flight briefing at airport
- T/O -45mins: Cabin security sweep
- Land +30 mins: Debrief on aircraft
- Land + 2hours: Possible quick look data sent to ops centre

BAe 146 operation – while aircraft away

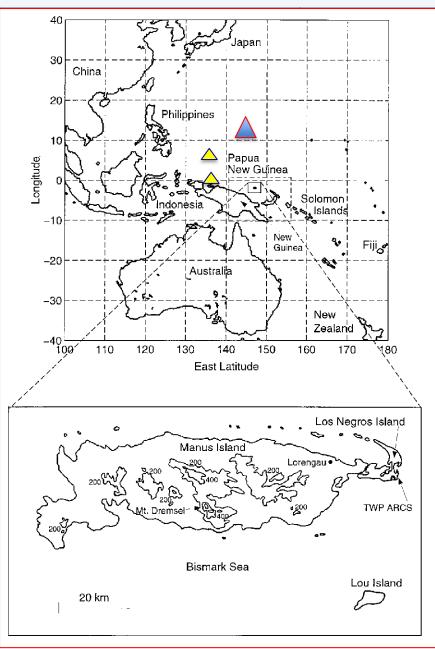
- 09:00: Scientists meeting
 - Examine quicklook data sent from flight
 - Met, chemical forecasting
 - Flight planning for future flights, joint flight planning discussions with CONTRAST / ATTREX
- 11:00: Mission scientists meet pilots / ops for initial flight discussion
- 12:00: Further data analysis, forecasting, model runs

CAST ground measurements

CAST : Manus (tbc)

Observation	Instrument	Investigator	Operation
O ₃ profile	ECC sonde	Manchester / Vaughan	Daily for 4 weeks
Surface O ₃	TE49C	Manchester / Vaughan	Continuous
Aerosol lidar ²	Leosphere ALS300	Manchester / Vaughan	Night-time
CO ₂ , CH ₄ , CO	Picarro	Cambridge / Harris	Continuous
VSL halocarbons ¹	Dirac GC	Cambridge / Harris	Continuous

1. CHBr₃, CH₂Br₂, CHBr₂Cl, CH₃I, CH₂BrCl, CHBrCl₂, C₂Cl₄ (depending on operating conditions)


2. We are still evaluating whether it is worth taking this instrument

Bureaucratic problems on going to Palau Provisionally accepted by ARM to be based at their site on Manus (2S) Need to sort logistics out CAST : Manus (tbc)

Observation	Instrument	
O ₃ profile	ECC sonde	
Surface O ₃	TE49C	
Aerosol lidar ²	Leosphere ALS300	
CO ₂ , CH ₄ , CO	Picarro	
VSL halocarbons ¹	Dirac GC	

- 1. CHBr₃, CH₂Br₂, CHBr₂Cl, CH₃I, CH₂BrCl, CHBrCl₂, C₂Cl₄ (dependent)
- 2. We are still evaluating whether it is worth taking this instr

△ SOWER+ ozonesondes

CAST – the rest

CAST - Coordinated Airborne Studies in the Tropics

Modelling

- Ocean emissions model Lucy Carpenter
- VSLS transport in GEOS-CHEM Paul Palmer
- Spatial scale analysis Mat Evans
- VSLS in UKCA and TTL structure John Pyle
- Cirrus modelling Rob MacKenzie
- Real-time data analysis (development) Plamen Angelov

Real-time

Halogen modelling in SLIMCAT – Martyn Chipperfield Discussed later

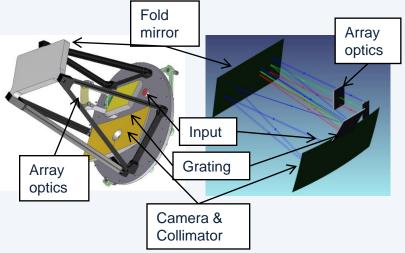
AIITS to be developed for Global Hawk under CAST project (Harris, Cambs)

Aerosol-Ice Interface Transition Spectrometer

•A new instrument that will quantify the size distribution of sub and super-micron particles as a function of their phase (liquid, "glassy/solid" or ice) and surface morphology in the Tropical Tropopause Layer.

•The instrument will be designed to provide diagnostically rich measurements of small aerosol and ice particles in the TTL, probing the critical aerosol-ice transition size regime (0.3-20 μ m), as well as the small ice particle size range (1-100 μ m).

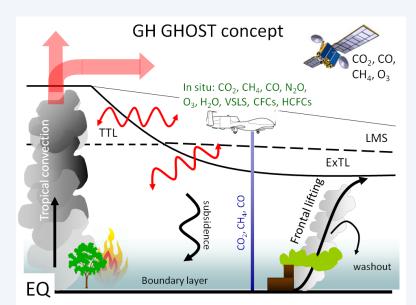
CAST - Co-ordinated Airborne Studies in the Tropics


Aimed at key scientific questions:

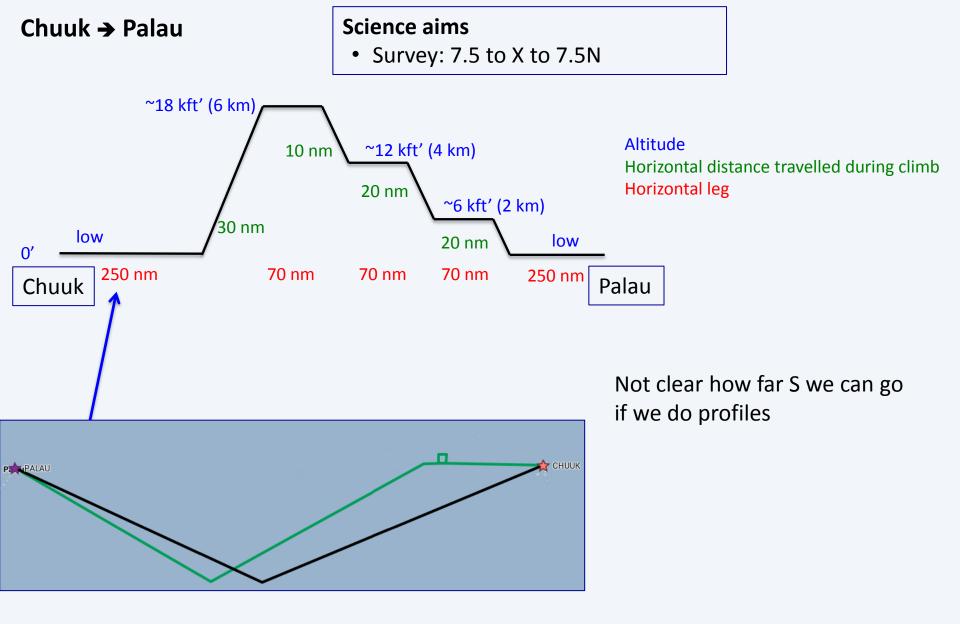
- Cirrus particle nucleation processes in the TTL
- Consequences of ice nucleation rates for cirrus persistence and lifetime
- Cirrus radiative scattering properties.

A new instrument for the Global Hawk UAV : The GreenHouse Observations of the Stratosphere and Troposphere (GHOST) instrument

University of Leicester , University of Edinburgh and the UK Astronomy Technology Centre


- Novel, compact short-wave IR spectrometer that is developed for Global Hawk UAV
- GHOST will acquire simultaneous GHG (CO₂, CH₄, CO) column data with high precision during large-scale surveys over ocean
- GHOST should be ready by for test flights end
 2014

Subsystem	Band 1	Band 2	Band 3	Band 4
Function	Cloud/aerosol, surface pressure	CH ₄ and CO ₂ columns	Cloud/aerosol, CO ₂ columns	CO, CH ₄ , H ₂ O, HDO columns
Spectral band	1.25 - 1.29 µm	1.59 – 1.68 µm	2.04 - 2.09 µm	2.31 – 2.39 µm
Spectral resolution (FWHM)	<0.1 nm	<0.25 nm	<0.15 nm	<0.25 nm



Primary science objectives of GHOST are to collect data to

- test atmospheric transport models (e.g., transition zone between tropics and subtropics)
- validate satellite GHG column observations over oceans thereby filling a critical gap of current validation networks
- complement in situ TTL tracer observations from the Global Hawk to help link upper troposphere with lower troposphere measurements

Thank you

