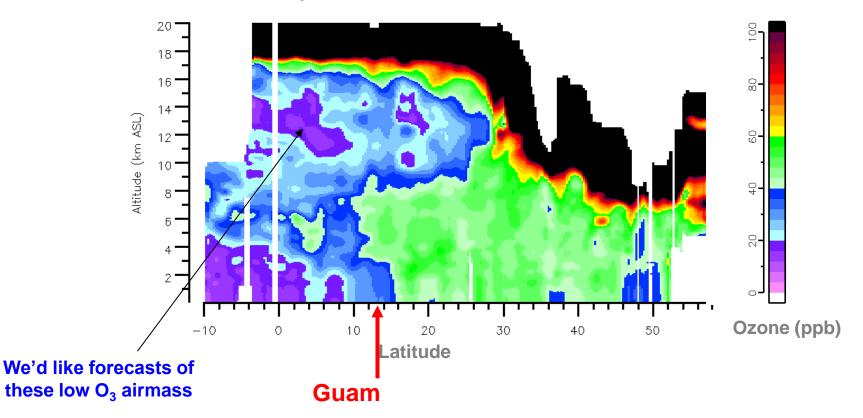
Chemical Forecasting will be beneficial for the successful achievement of numerous objectives:

- 1) Abundance of VSLs normally removed by reaction w/ OH at level of main convective outflow
- 2) Bromine budget: PGI & SGI

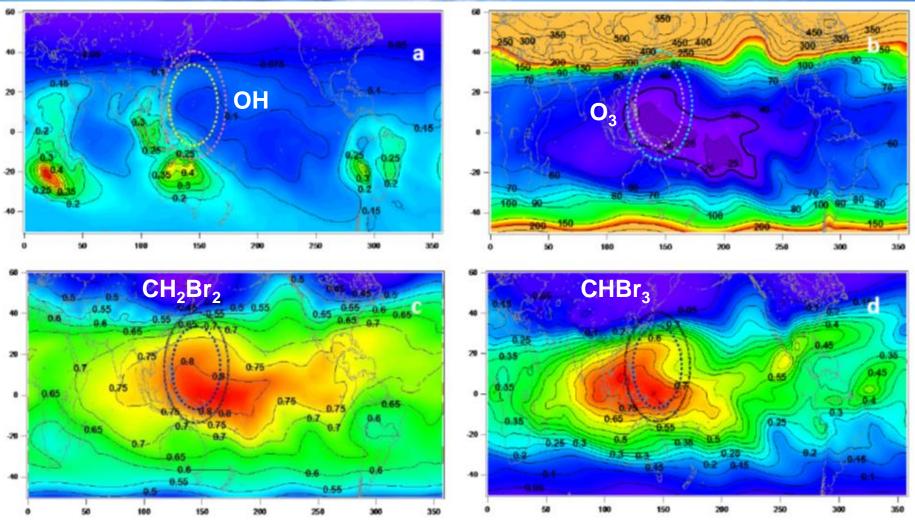
CONTRAST

- 3) Provide measurements for assessing OH fields within CCMs, such as O_3 , H_2O , CH_4 , CO, isoprene, formaldehdye, radiative flux in UV/Vis, etc
- 4) Provide observational constraint on transport pathways from the ocean surface to the stratosphere, via <u>coordinated flights</u> with CAST and ATTREX


Chemical Forecasts and Field Modeling

Ross Salawitch, Dan Anderson, Elliot Atlas, John Bergman, Rafael Fernandez-Cullen, Tom Hanisco, Neil Harris, Cameron Homeyer, Shawn Honomichl, Doug Kinnison, Jean-Francois Lamarque, Qing Liang, Julie Nicely, Laura Pan, Alfonso Saiz-Lopez, Simone Tilmes, Glenn Wolfe and many others ©

22 Oct 2013


Guam, Jan-Feb 2014

PEM WEST O₃, Western Pacific: Feb 1994, along ~140°E

Crawford et al., 1997, Newell et al., 1997

Guam, Jan-Feb 2014

As well as fields such as OH, CH₂Br₂, and CHBr₃

Calculated distributions, **CAM-CHEM**, for January at 200 hPa. Ovals indicate range of GV aircraft for a 6 hr flight and 8 hr flight, respectively. **4**

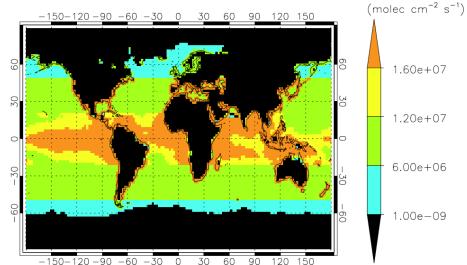
Guam, Jan-Feb 2014

Source: Doug Kinnison

NCAR CESM CAM-CHEM

- Global Chemistry-Climate Model
- 1.9° (lat) x 2.5° (lon) horizontal resolution
- 26 vertical levels (surface to ~ 4 hPa)
 Lamarque et al., Geosci. Mod. Dev., 2012

Tropospheric Halogen Chemistry

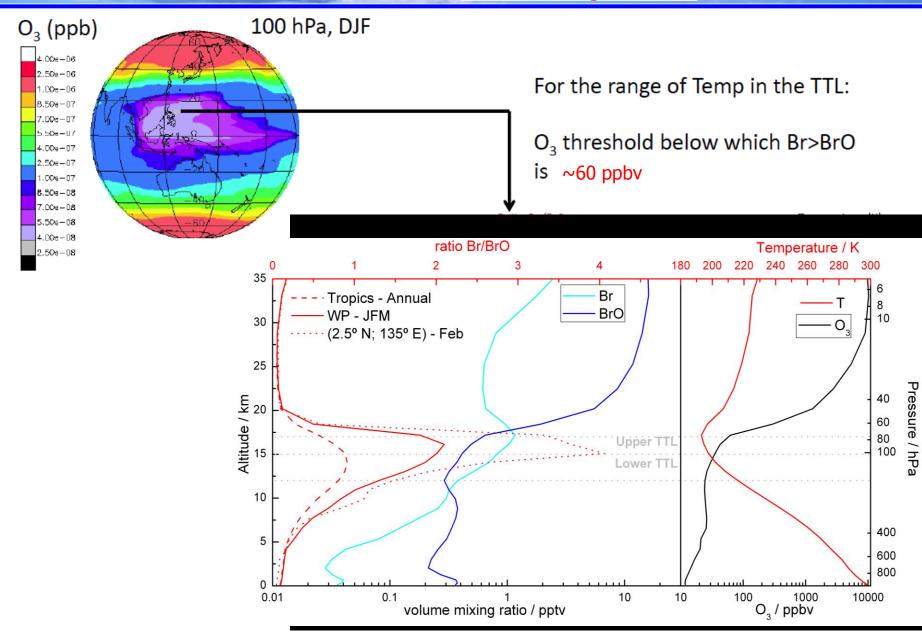

Halogenated sources from the ocean.

- Emissions following Chl-a over tropics
- Catalytic release from sea-salt
- Do NOT have polar emission processes

Chemical Processes

- Photochemistry (CI, Br, and I)
- Dry / wet deposition
- 9 Additional vsl Organic species included.
- 160 species, 427 reactions

CHBr₃ Flux in CAM-Chem

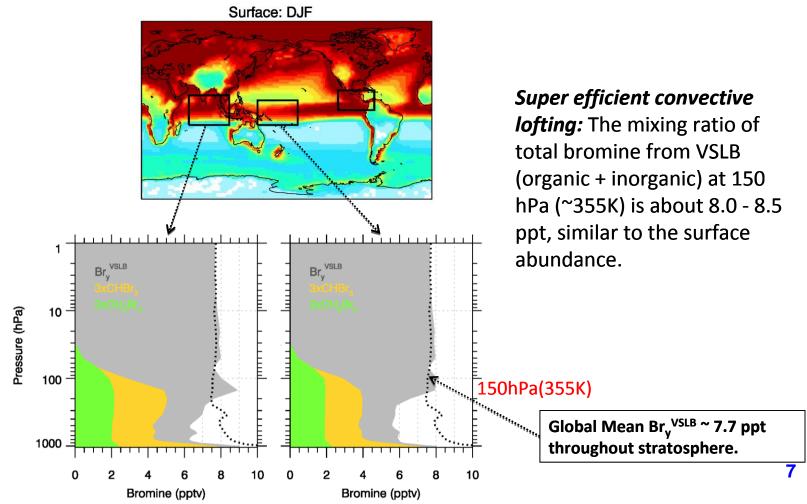


Source gas	Global annual flux (Gg yr^{-1})		Lifetime
	This study Literature		(this study)
CHBr ₃	533	400ª, 595 ^b , 448 ^d	17 days
CH_2Br_2	67.3	113 ^c , 62 ^d	130 days
CH ₂ BrCl	10.0	6.8 ^c	145 days
CHBr ₂ Cl	19.7	23°	56 days
CHBrCl ₂	22.6	16 ^c	46 days
CH ₃ Br*	climatology	131 ^c	1.6 yr ^g
CH ₃ I**	303	304 ^e	5 days
CH ₂ IC1	234	236 ^f	8 h
CH ₂ IBr	87.3	87 ^f	2.5 h
CH ₂ I ₂	116	116 ^f	7 min

Total Bromine: 632 Gg Br yr⁻¹ Total Iodine: 600 Gg I yr⁻¹

Guam, Jan-Feb 2014

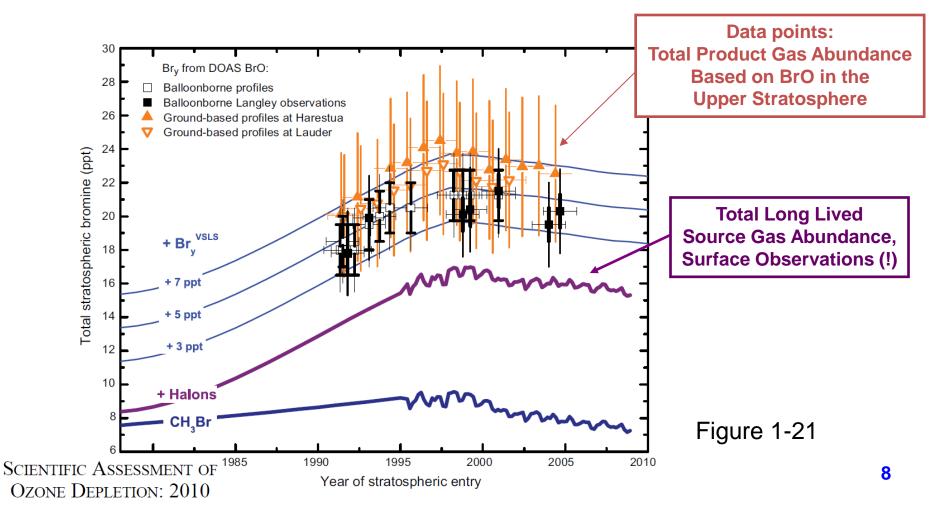
Source: Doug Kinnison


-

Guam, Jan-Feb 2014

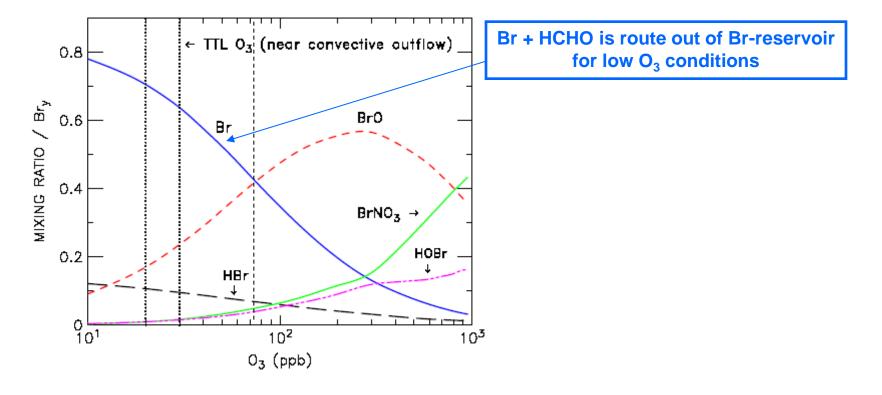
Source: Qing Liang

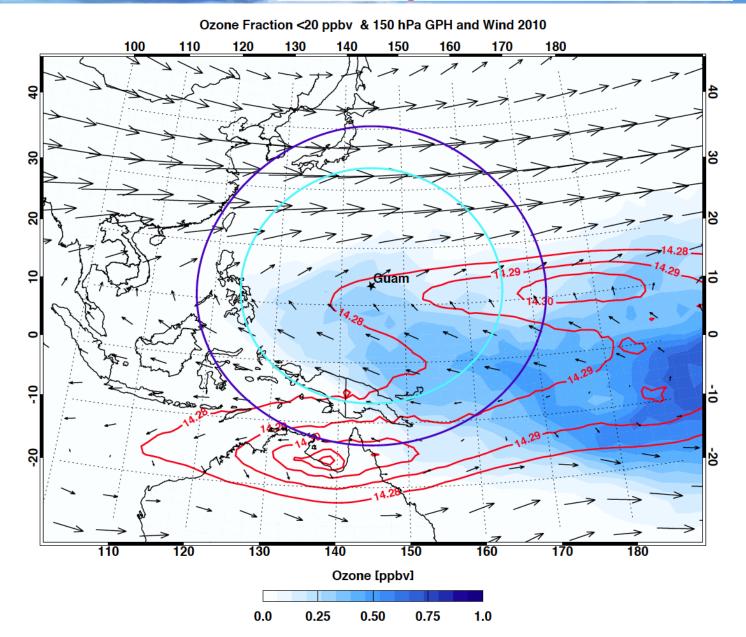
Prior obs & modeling: SGI (source gas injection) of Br_y is probably 5 to 7 ppt


Prior obs & modeling: PGI (product gas injection) of Br_y highly uncertain: depends on efficiency of aerosol uptake and washout versus het chem release of labile bromine and strength of convection (Q. Liang talk)

Guam, Jan-Feb 2014

Prior obs & modeling: SGI (source gas injection) of Br_v is probably 5 to 7 ppt


Prior obs & modeling: PGI (product gas injection) of Br_y highly uncertain: depends on efficiency of aerosol uptake and washout versus het chem release of labile bromine and strength of convection (Q. Liang talk)


Guam, Jan-Feb 2014

Prior obs & modeling: SGI (source gas injection) of Br_v is probably 5 to 7 ppt

Prior obs & modeling: PGI (product gas injection) of Br_y highly uncertain: depends on efficiency of aerosol uptake and washout versus het chem release of labile bromine and strength of convection (Q. Liang talk)

Source: Doug Kinnison & Shawn Honomichl

CONTRAST

10

Guam, Jan-Feb 2014

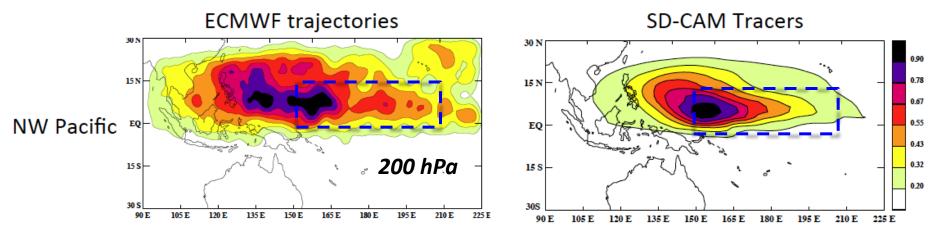
The Plan:

- NCAR CESM CAM-CHEM forecast simulations to occur in Boulder
- 3 day forecasts will be available every ~24 hrs using GEOS5 met fields
- forecasting will begin with ferry flights
- domain-wide plots to be generated via script
- curtain plots along candidate flight trajectories possible: probably implemented by folks in Guam providing ASCII file with flight coordinates to server in Boulder, with plots generated in Boulder
- at this time we are not planning to transfer model files to Guam
- besides O₃, we intend to examine fields of:
 - H₂O, CH₄, CO
 - 10 VSLs listed on slide 5 plus a few select ratios
 - OH, HO₂, HCHO, NO, NO₂, BrO, Br/BrO, IO (daytime active species)
 - HBr, HOBr, BrNO₃, BrCl (dawn/dusk flights)

Guam, Jan-Feb 2014

All nun	bers units of days	τ_{OH}	τ_{J}	τ_{Total}
	(27	75 K, 5 ł	km)	
CHBr ₃	Bromoform	100	36	26
CH ₂ Br ₂	Dibromomethane	120	5000	120
CH_2BrCl	Bromochloromethane	50	15000	150
C ₃ H ₇ Br	n-propyl bromide	13	>1200	13
CHBr ₂ Cl	Dibromochloromethane	120	161	69
$C_2H_4Br_2$	Ethylene dibromide	58	_	58

Expect to see [CHBr₃]/[CH₂Br₂], [CHBr₃]/[CH₂BrCl], & [CHBr₃]/[C₂H₇Br] drop in air masses recently lofted from MBL to region of low O₃ (and presumably low OH) because photolytic loss will continue while *OH loss will decline*


A forecast of ratio of halocarbons lost mainly by photolysis to other halocarbons lost mainly by reaction with OH may be helpful for diagnosing the "OH hole"

Action Item: Kinnison & Salawitch to assess what ratios to be cataloged

Source: John Bergman & Laura Pan

Convective influence from both trajectory models and SD-CAM

CONTRAST

Access to MBL origin plots (John Bergman's product) will be extremely helpful for flight planning as well as near real time data interpretation

Guam, Jan-Feb 2014

A chemical modeler's / co-mission scientist wish list ©

Class 1	O ₃
Class 2	CO, $H_2O \& CH_4$ C H_2Br_2 , CHB r_3 , C H_3I , etc NO _x , OH, HO ₂ , HCHO
Class 3	BrO, BrO/Br _y , IO : daytime flights HBr, HOBr, BrNO ₃ , BrCI : dawn/dusk flights Non-methane precursors of HO _x & HCHO (H ₂ O ₂ , acetone, isoprene, ethane, etc)

Class 1 ⇒ as many vetted models as possible
Class 2 ⇒ multiple models very helpful
Class 3 ⇒ at least one model

Source: Neil Harris

Near Real Time TOMCAT/SLIMCAT Model Simulations

Hannah Mantle, Ryan Hossaini, Martyn Chipperfield

University of Leeds, UK

- Forced by ECMWF operational analyses. Available within 1 day of analysis time.
- Model resolution up to e.g. 1° x 1°.

CONTRAST

- Run could include 'full ' chemistry (stratosphere/troposphere).
- Can include tracers for different emission fields (e.g. 4 different CHBr₃ emission datasets).
- Can provide sample at stations and along flight tracks for 'first look' comparisons.

Can set up web page. See example from SHIVA campaign: www.see.leeds.ac.uk/slimcat http://homepages.see.leeds.ac.uk/~earrh/SHIVA_SITE/

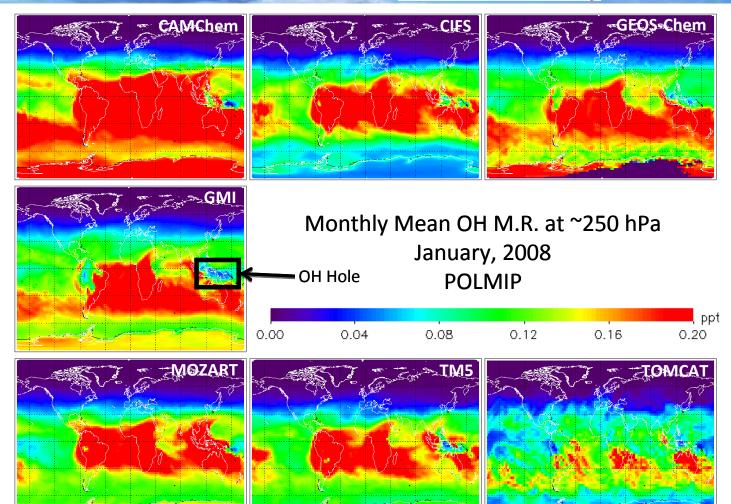
Guam, Jan-Feb 2014

Other possible sources of forecast information:

MACC: Monitoring atmospheric composition and climate http://www.gmes-atmosphere.eu Standard products: O₃, CO, NO_x, HCHO, and SO₂ Surface, 850, 500, 300, and 30 hPa

> Field campaign support available upon request http://www.gmes-atmosphere.eu/services/aqac/campaign_support

D-AQ: Total AOD, Dust, Sea-Salt, Sulphate, Black Carbon, Organic Matter TRAQA: Dust, Black Carbon, tagged CO (South Asia, W. Europe, E. Europe N. Africa, Europe Biomass-burning)


MOZART-4 MOPITT

http://www.acd.ucar.edu/acresp/forecast Standard products: O₃, CO, tagged CO, NO_x, and PAN Surface, 4 km, 10 km, and column CO tags: fires, NA, Europe, India, E. Asia

Output routinely provided on line Tool developed for air pollution applications; the higher in altitude the more the product is influenced by climatology

Guam, Jan-Feb 2014

Source: Julie Nicely

Julie Nicely's analysis of CTM fields of OH

Fields of forecast OH at different flight levels would be interesting to examine, both for flight planning and data analysis¹⁷

Guam, Jan-Feb 2014

Source: Julie Nicely

Box model constraints	Box model output	
р	OH and HO ₂	
т	H ₂ O ₂	
Overhead O₃ Column	NO ₂	
O ₃	нсно	
СО	Acetone	
H ₂ O	Acetaldehyde	
NO	Methanol	
CH ₄	Ethanol	
C ₂ H ₆	Methyl vinyl ketone	
C ₃ H ₈	Methacrolein	
Isoprene	Methyl butenol	
J(O ¹ D)	Propanal	
J(NO ₂)	Butanal	
Aerosol Surface Area Density		

*Blue: measured on GV

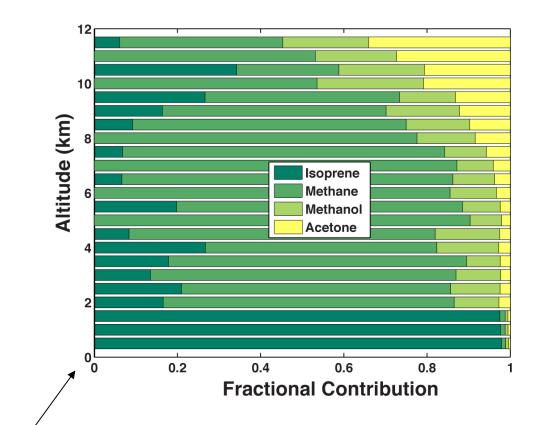
Note: box model amenable to quantification of $O(^{1}D)+H_{2}O$ vs CH_{4} oxidation source of HO_{x} 18

Source: Tom Hanisco and Glenn Wolfe

Comparison of modeled and measured HCHO may provide empirical constraint on role of non-methane hydrocarbon sources of HOx

Guam, Jan-Feb 2014

Source: Tom Hanisco and Glenn Wolfe


Small amounts of labile sources lead to large HCHO production.

We are sensitive to **recent** convection.

We are also susceptible to biases in source terms:

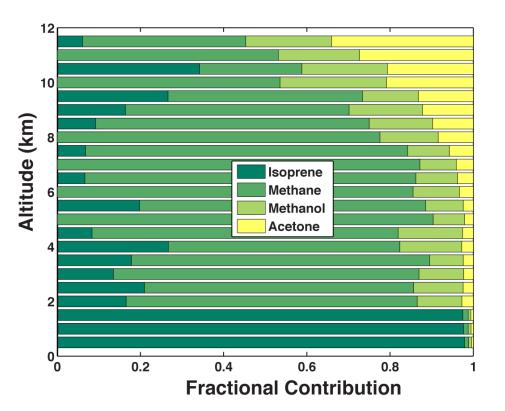
- Isoprene noise
- Acetone (VOC) offset

Can we identify loss via Br + HCHO -> HBr + HCO ?

Access to plots such as this, in the field, will be helpful as a "reality check" on the global models

Guam, Jan-Feb 2014

Source: Tom Hanisco and Glenn Wolfe


Small amounts of labile sources lead to large HCHO production.

We are sensitive to **recent** convection.

We are also susceptible to biases in source terms:

- Isoprene noise
- Acetone (VOC) offset

Can we identify loss via Br + HCHO -> HBr + HCO ?

Would be fantastic to have an empirical, near real time estimate of [Br] based on observations of HCHO, J_{HCHO}, and the total sources of HCHO ... would only be "believable" if we see unmistakable drawn down of HCHO in the presence of low O₃ and a chemical scale analysis shows loss of HCHO via rxn w/ Br occurs at comparable rate to loss by photolysis

CONTRAST

The Plan:

- Julie & Tim will be conducting box model simulations along the GV flight track in the field, with a focus on OH
- Glen & Dan will also be conducting box model simulations along the GV track in the field, with a focus on HCHO
- box modeling by others encouraged, either during or after deployment!
- box modeling requires a suite of GV measurements as inputs
- in my prior life as stratospheric modeler, we could used tracer/tracer relations to fill in gaps until data became available
- data gaps not easily filled in the tropical troposphere: modelers must clearly communicate to instrument team which observations are needed as input to various box models

Concluding Thoughts

- 1) Mission success contingent on chemical forecasting & near real time box modeling
- 2) Of course post-mission modeling is also a key component of mission success ©

CONTRAST

- 3) Coordination of CONTRAST chemical forecasting with CAST and ATTREX in everyone's best interest
- 4) If I have overlooked or mis-represented a component of chemical forecasting or near real time box modeling, please let me know !