

Photochemical Hypotheses for Halogen Chemistry during CONTRAST

Ross Salawitch

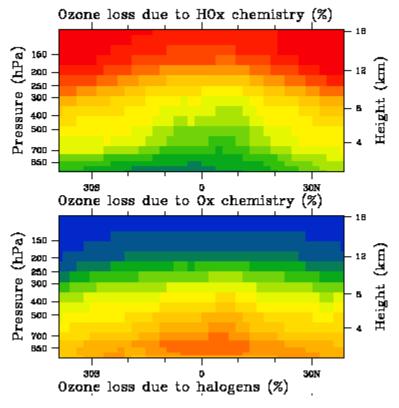
21 Oct 2013

1

Objectives

- 1. Quantify role of halogens (bromine, iodine, and chlorine) in the the photochemical of tropospheric ozone
- 2a. Quantify delivery of halogens to the LMS via VSL halocarbons

⇒ Primary focus bromine but iodine & chlorine will also be observed

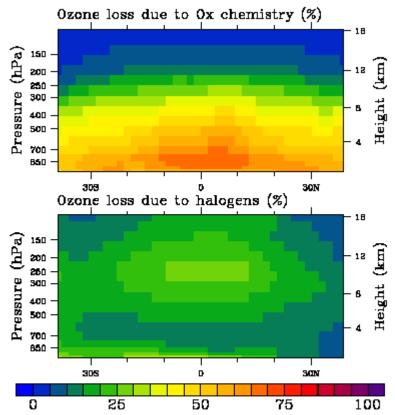

- 2b. Close the bromine budget by assessing balance of loss of organics with appearance of inorganics
- 3. Conduct dawn / dusk flights to:

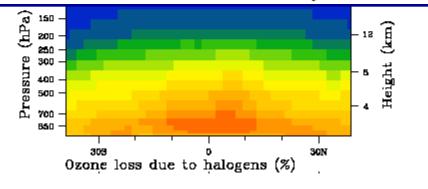
CONTRAST

- ⇒ Quantify role of VSL chlorocarbons via obs of nighttime BrCl
- ⇒ Provide sensitivity to inorganic bromine under low O₃ conditions via obs of nightime BrCl & HOBr
- \Rightarrow Test coupling of BrO & BrONO₂ via obs. of BrO, NO₂, etc vs SZA

Guam, Jan-Feb 2014

1. Role of halogens in the photochemical of tropospheric ozone




Fig. 6. Percentage of the annually integrated chemical ozone loss from HO_x , O_x and halogen photochemistry as simulated by CAM-Chem.

Saiz-Lopez et al., ACP, 2012

Key obs: IO, BrO BrCl to constrain CIO H_2O , CH₄, CO, VOCs etc used to constrain HO₂ Halocarbons

Guam, Jan-Feb 2014

In the TMBL (20° S–20° N), the annually integrated rate of surface ozone loss due to halogen chemistry is $\sim 6 \times$ pric ozone 10^5 molecule cm⁻³ s⁻¹ (~0.15 ppbv h⁻¹ at daytime) (Fig. 5, Ox chemistry (%) left). The integrated contribution of iodine-mediated reactions to the total rate of surface ozone loss is three times larger than that of bromine chemistry alone. When both chemistries are combined via the reaction of IO+BrO to Br + OIO (75%) and Br + I (25%), the ozone loss rate is fourfold that of bromine chemistry alone.

E E Height 30N halogens (%) 18 (PPa) (hPa) (hPa) Height (km Pressure 300 400 500 700 850 30N 305 25 75 0 50 100

Fig. 6. Percentage of the annually integrated chemical ozone loss

from HOx, Ox and halogen photochemistry as simulated by CAM-Key obs: IO, BrO Chem. **BrCl to constrain ClO** H₂O, CH₄, CO, VOCs etc used to constrain HO₂ Halocarbons such as CH₃I, CH₂I₂, CH₂IBr, and CH₂ICL

Saiz-Lopez et al., ACP, 2012

Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons

⇒ Primary focus bromine but iodine & chlorine will also be observed

Table 1-9. Summary of source gas (SG) and product gas (PG) observations and modeling results to constrain input of halogens from VSLS into the stratosphere. Note that only observations of chlorine-containing PGs exist; estimates of PG amounts for bromine are based solely on modeling studies and only upper limits of iodine-containing PGs are available. For bromine and iodine only ranges can be estimated from this. Details on the way that these numbers have been derived can be found in the Sections 1.3.3.1 (SG), 1.3.3.2 (PG) and 1.3.3.3 (total). All values are given in ppt.

Halogen or Compound	Measured TTL to CPT Abundance (ppt Cl, Br, or I)	"Best Estimate" TTL Abundance (ppt Cl, Br, or I)	"Best Estimate" Contribution from VSLS (ppt Cl, Br, or I)
Chlorine			
VSL SGs	26-80 ^{a, b}	55 (38–80) °	55 (38–80)
HCl PG	0-40 ^d	20 (0-40)	10 (0–20)
COCl ₂ PG	31 ± 22 to 36 ± 26 °	32 (± 22)	16 (0-32)
Total chlorine	25-170 ^f		80 (40–130) ^f
Bromine			
VSL SGs	0.7-6.5 ^{a, b}	2.7 (1.4–4.6) ^{a, c}	0.7-3.4 ^{a, g}
PG sum			0.4-4.2 ^h
Total bromine			1–8 ^{i, f}
Iodine			
CH ₃ I SG	$< 0.05^{a}$	< 0.05 ^a	< 0.05 a
IO, OIO PG	< 0.1 ^j	< 0.1 ^j	< 0.1 ^j
Total iodine			$< 0.15^{k}$

WMO / UNEP 2010 Ozone Assessment Report (Green Book)

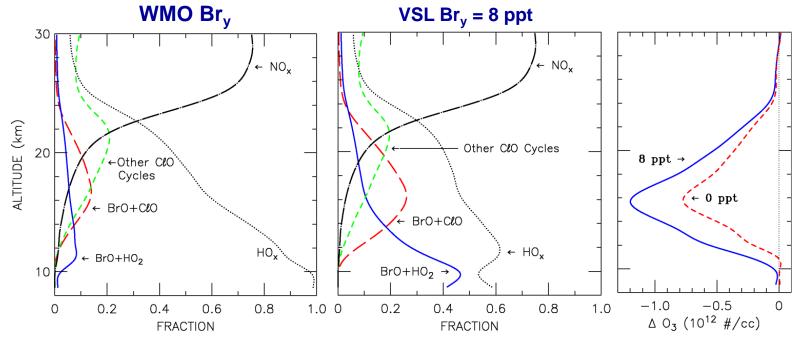
Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons

⇒ Primary focus bromine but iodine & chlorine will also be observed

Table 1-9. Summary of source gas (SG) and product gas (PG) observations and modeling results to constrain input of halogens from VSLS into the stratosphere. Note that only observations of chlorine-containing PGs exist; estimates of PG amounts for bromine are based solely on modeling studies and only upper limits of iodine-containing PGs are available. For bromine and iodine only ranges can be estimated from this. Details on the way that these numbers have been derived can be found in the Sections 1.3.3.1 (SG), 1.3.3.2 (PG) and 1.3.3.3 (total). All values are given in ppt.

	Halogen or Compound	Measured TTL to CPT Abundance (ppt Cl, Br, or I)	"Best Estimate" TTL Abundance (ppt Cl, Br, or I)	"Best Estimate" Contribution from VSLS (ppt Cl, Br, or I)
	Chlorine			
	VSL SGs	26-80 ^{a, b}	55 (38–80) °	55 (38-80)
	HCl PG	0-40 ^d	20 (0-40)	10 (0–20)
	COCl ₂ PG	31 ± 22 to 36 ± 26 °	32 (± 22)	16 (0-32)
We'd lik	ke to help reduce thi	s large range of	uncertainty	80 (40–130) ^f
	Bromine			
	Diomane			
	VSL SGs	0.7–6.5 ^{a, b}	2.7 (1.4–4.6) ^{a, c}	0.7–3.4 ^{a, g}
		0.7–6.5 ^{a, b}	2.7 (1.4–4.6) ^{a, c}	0.7-3.4 ^{a,g} 0.4-4.2 ^h
	VSL SGs	0.7–6.5 ^{a, b}	2.7 (1.4–4.6) ^{a, c}	
	VSL SGs PG sum	0.7–6.5 ^{a, b}	2.7 (1.4–4.6) ^{a, c}	0.4-4.2 ^h
	VSL SGs PG sum Total bromine	0.7–6.5 ^{a, b} < 0.05 ^a	2.7 (1.4-4.6) ^{a, c} < 0.05 ^a	0.4-4.2 ^h
	VSL SGs PG sum Total bromine <i>Iodine</i>			0.4–4.2 ^h 1–8 ^{i, f}


WMO / UNEP 2010 Ozone Assessment Report (Green Book)

2a. Quantify delivery of halogens to the LMS via VSL halocarbons

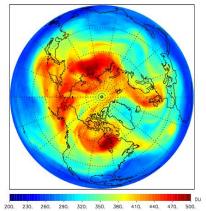
CONTRAST

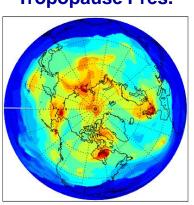
⇒ Primary focus bromine but iodine & chlorine will also be observed

Guam, Jan-Feb 2014

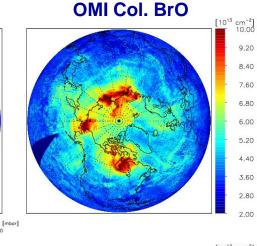
Salawitch et al., GRL, 2005

Bromine supplied by VSL bromocarbons leads to: Enhanced ozone depletion due mainly to BrO+ClO cycle BrO+HO₂ catalytic cycle becomes very significant sink below 16 km

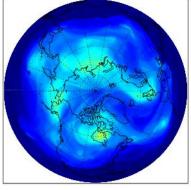

Guam, Jan-Feb 2014

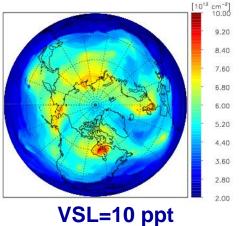

2a. Quantify delivery of halogens to the LMS via VSL halocarbons

⇒ Primary focus bromine but iodine & chlorine will also be observed


OMI Total Column O₃

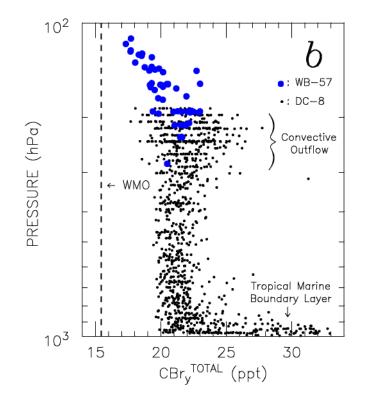
Tropopause Pres.


172 213 254 295 336 377 418 459 50 90 131 500


Model Stratospheric Column BrO

VSL=0 ppt

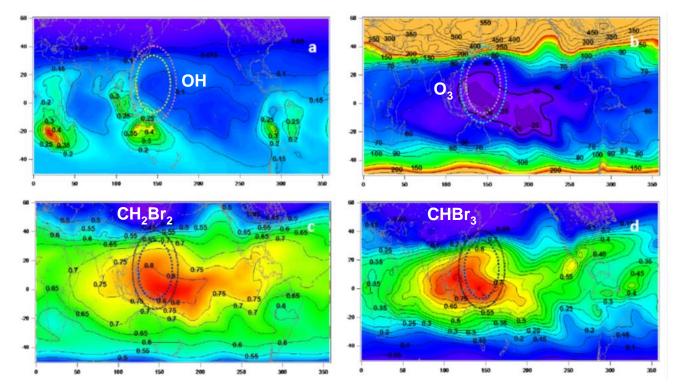
VSL=5 ppt


8

⇒ Primary focus bromine but iodine & chlorine will also be observed

Guam, Jan-Feb 2014

Prior obs: PGI (product gas injection) of Br_y could be 5 to 7 ppt ⇒ these obs obtained over Costa Rica; PGI could be a lot larger in TWP


Salawitch et al., GRL, 2010

Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons

⇒ Primary focus bromine but iodine & chlorine will also be observed

Prior obs: PGI (product gas injection) of Br_y could be 5 to 7 ppt ⇒ these obs obtained over Costa Rica; PGI could be a lot larger in TWP

Calculated distributions, CAM-CHEM, for January at 200 hPa. Concentric ovals indicate range of GV aircraft for a 6 hr flight and 8 hr flight, respectively.

Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons

⇒ Primary focus bromine but iodine & chlorine will also be observed

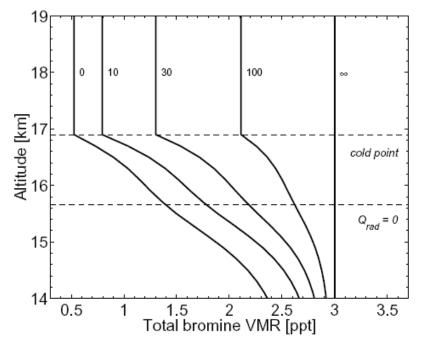
We expect to quantify effect of "OH hole" on halocarbons even though OH will not be observed

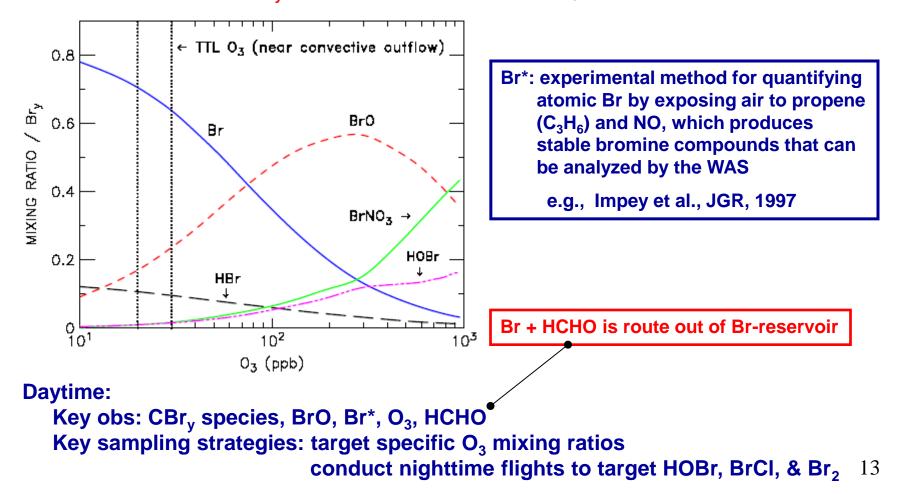
		$ au_{OH}$	$ au_{\mathrm{J}}$	τ_{Total}	Expect to see [CHBr ₃]/[CH ₂ Br ₂],
		(275 K, 5 k	km)		$[CHBr_3]/[CH_2BrCI], \& [CHBr_3]/[C_2H_7Br]$
CHBr ₃	Bromoform	100	36	26	drop in air masses recently lofted from MBL to region of low O ₃
CH ₂ Br ₂	Dibromomethane	120	5000	120	(and presumably low OH)
CH_2BrCl	Bromochloromethane	150	15000	150	because photolytic loss will continue while <i>OH loss will decline</i> :
C_3H_7Br	n-propyl bromide	13	>1200	13	we can (and will) calculate OH
CHBr ₂ Cl	Dibromochloromethane	120	161	69	based on obs O ₃ , H ₂ O, CH ₄ , etc but developing an empirical means
$C_2H_4Br_2$	Ethylene dibromide	58	—	58	to infer ambient OH will be an important compliment to modeled OH

Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons2b. Close the bromine budget

Prior theory: SGI (source gas injection) of Br_y highly uncertain: depends on efficiency of aerosol uptake and washout versus het chem release of labile bromine




Fig. 5. Calculated total bromine released from bromoform (defined as $Br_y+3\times CHBr_3$) for different washout rates of Br_y (numbers in the figure give τ_w in days, the lifetime of Br_y due to washout). The calculations assume 1 pptv of bromoform in the boundary layer and no detrainment of Br_y from convection (see text for discussion).

SInnhuber and Folkins, ACP, 2006

Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons2b. Close the bromine budget

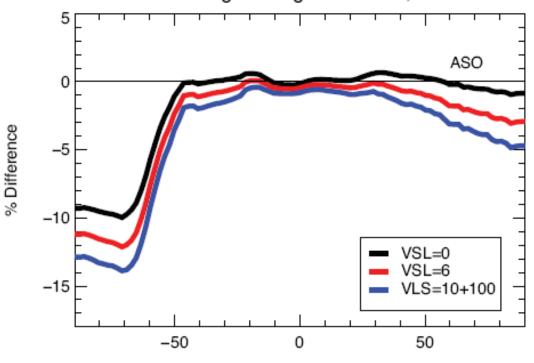
Huge challenge: Br_v partitions to Br under low O₃ during daytime

Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons

⇒ Primary focus bromine but iodine & chlorine will also be observed

Table 1-9. Summary of source gas (SG) and product gas (PG) observations and modeling results to constrain input of halogens from VSLS into the stratosphere. Note that only observations of chlorinecontaining PGs exist; estimates of PG amounts for bromine are based solely on modeling studies and only upper limits of iodine-containing PGs are available. For bromine and iodine only ranges can be estimated from this. Details on the way that these numbers have been derived can be found in the Sections 1.3.3.1 (SG), 1.3.3.2 (PG) and 1.3.3.3 (total). All values are given in ppt.


	Halogen or Compound	Measured TTL to CPT Abundance (ppt Cl, Br, or I)	"Best Estimate" TTL Abundance (ppt Cl, Br, or I)	"Best Estimate" Contribution from VSLS (ppt Cl, Br, or I)
	Chlorine			
	VSL SGs	26-80 ^{a, b}	55 (38–80) °	55 (38–80)
	HCl PG	0–40 ^d	20 (0-40)	10 (0-20)
	COCl ₂ PG	31 ± 22 to 36 ± 26 $^{\rm e}$	32 (± 22)	16 (0-32)
	Total chlorine	25-170 ^f		80 (40-130) ^f
	Bromine			
lf ~100 pp	t of chlorine aets	through, this is y	very important for	0.7–3.4 ^{a, g}
	tospheric O ₃			0.4-4.2 ^h
	Total bromine			1–8 ^{i, f}
	Iodine			
	CH₃I SG	$< 0.05^{a}$	< 0.05 ^a	< 0.05 ^a
	IO, OIO PG	< 0.1 ^j	< 0.1 ^j	< 0.1 ^j
	Total iodine			$< 0.15^{k}$

WMO / UNEP 2010 Ozone Assessment Report (Green Book)

⇒ Primary focus bromine but iodine & chlorine will also be observed

Guam, Jan-Feb 2014

Geo-engineering - Baseline, Year 2040

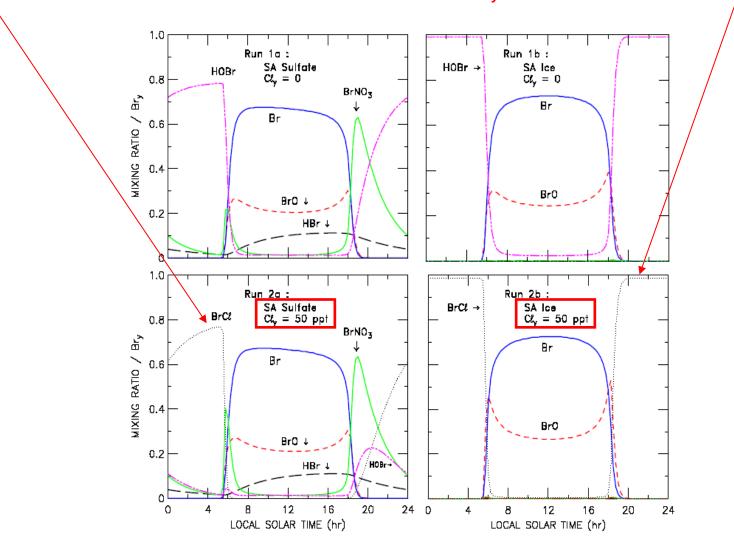
Equivalent Latitude

Fig. 2. Relative difference of column ozone between geo-engineering and baseline model results for four seasons (different panels). All calculations are for year 2040. Different values of VSL halogens are considered: Br_y^{VSL} and Cl_y^{VSL} both = 0 (black), $Br_y^{VSL} = 6$ ppt and $Cl_y^{VSL} = 0$ (red), and $Br_y^{VSL} = 10$ ppt and $Cl_y^{VSL} = 100$ ppt (blue). Results are shown as a function of equivalent latitude.

Guam, Jan-Feb 2014

2a. Quantify delivery of halogens to the LMS via VSL halocarbons ⇒ Primary focus bromine but iodine & chlorine will also be observed

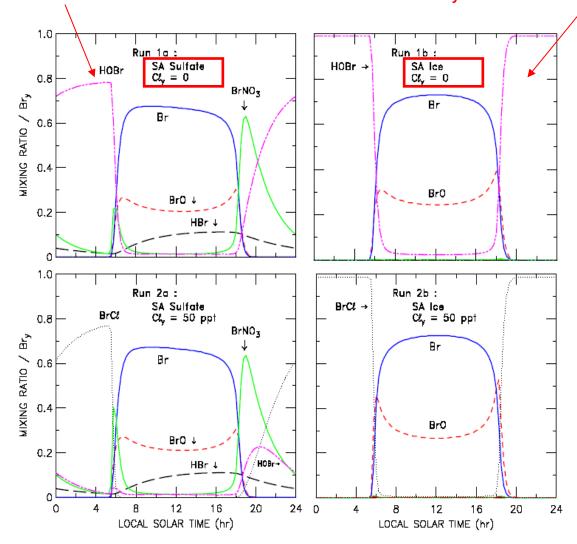
CONTRAST will observed a comprehensive suite of VSL chlorocarbons plus BrCl


Estimate" ion from VSLS "l, Br, or I)
(38–80)
(0-20)
(0-32)
40–130) ^f
7–3.4 ^{a, g}
4-4.2 ^h
1–8 ^{i, f}
0.05 ^a
< 0.1 ^j
0.15 ^k

WMO / UNEP 2010 Ozone Assessment Report (Green Book)

Guam, Jan-Feb 2014

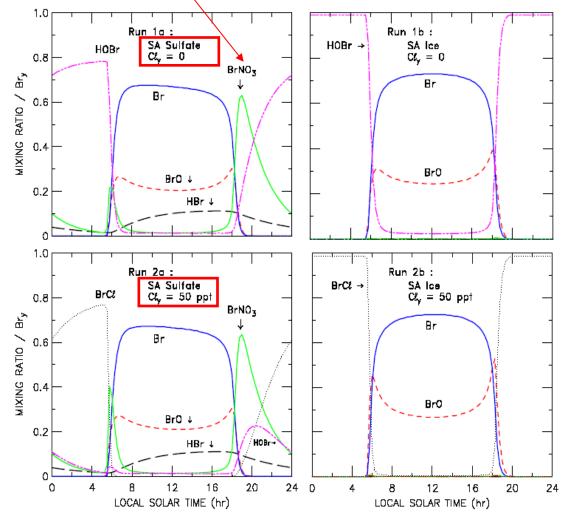
3. Dawn dusk flights


BrCl expected to be primary nighttime reservoir of Br_y in presence of 50 to 100 ppt of Cl_y

Guam, Jan-Feb 2014

3. Dawn dusk flights

Ability to measure HOBr could be useful for constraining Br_v (but only if $Cl_v << 50$ ppt)



Guam, Jan-Feb 2014

CONTRAST

3. Dawn dusk flights

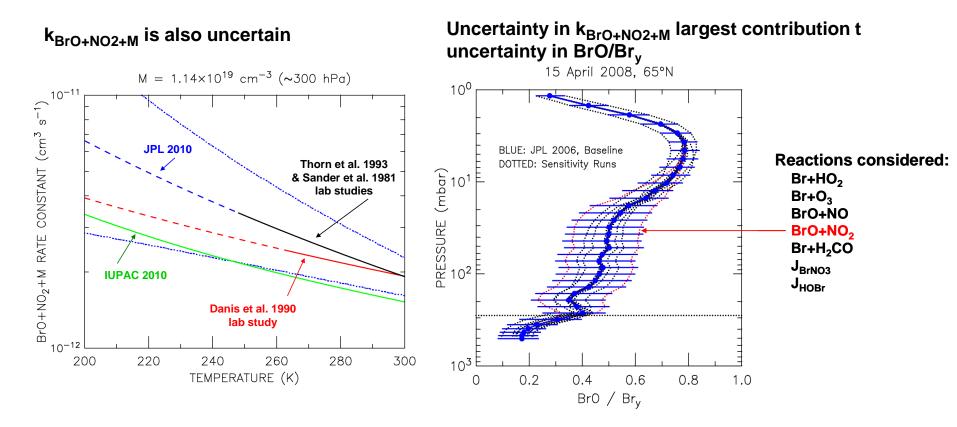
d(BrO)/dt & d(NO₂)/dt across evening terminator will provide constraint on the partitioning of BrO & BrONO₂ (unless ice drives rapid formation of HOBr)

Guam, Jan-Feb 2014

CONTRAST

3. Dawn dusk flights

d(BrO)/dt & d(NO₂)/dt across evening terminator will provide constraint on the partitioning of BrO & BrONO₂ (unless ice drives rapid formation of HOBr)


Kreycy et al., ACP, 2013:

Abstract. We report on time-dependent O₃, NO₂ and BrO profiles measured by limb observations of scattered skylight in the stratosphere over Kiruna (67.9° N, 22.1° E) on 7 and 8 September 2009 during the autumn circulation turn-over. The observations are complemented by simultaneous direct solar occultation measurements around sunset and sunrise performed aboard the same stratospheric balloon payload. Supporting radiative transfer and photochemical modelling indicate that the measurements can be used to constrain the ratio $J(BrONO_2)/k_{BrO+NO_2}$, for which at $T = 220 \pm 5$ K an overall 1.7(+0.4 - 0.2) larger ratio is found than recommended by the most recent Jet Propulsion Laboratory (JPL) compilation (Sander et al., 2011).

Guam, Jan-Feb 2014

3. Dawn dusk flights

d(BrO)/dt & d(NO₂)/dt across evening terminator will provide constraint on the partitioning of BrO & BrONO₂ (unless ice drives rapid formation of HOBr)

Guam, Jan-Feb 2014

CONTRAST

3. Dawn dusk flights

d(BrO)/dt & d(NO₂)/dt across evening terminator will provide constraint on the partitioning of BrO & BrONO₂ (unless ice drives rapid formation of HOBr)

Sunset measurements of BrO, NO₂, & O₃, if executed properly, could add to the long legacy of evaluating atmospheric photochemical mechanisms:

- Salawitch et al. (GRL, 1994) for $J_{O3 \rightarrow O(1D)}$
- Stimple et al. (JGR, 1994) for J_{CIONO2}
- Lary et al. (JGR, 1996) for J_{HOBr}
- Gao et al. (JGR, 2001) for J_{NO2}
- Salawitch et al. (GRL, 2002) for near-IR photolysis of HO₂NO₂
- Stimpfle et al. (JGR, 2003) for J_{CIOOCI}

Guam, Jan-Feb 2014

IT TAKES A VILLAGE

CONTRAST GV Payload

Observation	Instrument	Investigator	Meas. Synergy
O ₃	Fast O ₃	Weinheimer, Campos, Flocke	GH, BAe
H ₂ O Vapor	VCSEL	RAF	GH, BAe
СО	ACD (VUV)	Campos	GH, BAe
CH ₄	ACD (Picarro)	Flocke	GH, BAe
CO ₂	ACD (Picarro)	Flocke	GH, BAe
NO, NO ₂	ACD (Chemiluminescence)	Weinheimer, Campos, Flocke	BAe
BrO, HOBr, BrCl, Br ₂ (in situ)	CIMS	Huey	BAe
BrO, IO, H ₂ CO (remote)	CU-AMAX (DOAS)	Volkamer	GH
NMHC, short lived tracers, HCFCs, halocarbons	AWAS	Atlas	GH, BAe
VOCs, NMHCs, OVOCs, halocarbons, etc #	TOGA	Apel, Riemer	None
Aerosol (number, size, distribution)	UHSAS	RAF or Dave Rodgers	None
Cloud detection (in situ)	CDP, 2D-C	RAF or Al Cooper	GH (remote)
Microwave Temperature Profiler	MTP	Haggerty	GH
Radiation (UV/VIS)	HARP	Hall	GH, BAe

[#] TOGA is capable of measuring:

Hydrocarbons: Propane, 1-Butene, i-Butene, Butane, i-Butane, Benzene, Tolouene, Ethyl Benzene, t-2-Butene, c-2-Butene, Pentane,

1,3-Butadiene, Limonene, Isoprene, t-2-Pentene, c-2-Pentene, i-Pentane, o-Xylene, m/p-Xylene, 1,3,5-Trimethylbenzene,

1,2,4-Trimethylbenzene, α -Pinene, β -Pinene, Camphene, Myrcene

Oxygenates: Acetaldehyde, Propanal, Butanal, Pentanal, Methacrolein, Methyl Vinyl Ketone, Methyl Butenol, Methanol, Ethanol, Acetone, Butanone, 2-Pentanone, 3-Pentanone, Methyl t-Butyl Ether

Halocarbons: CHCl₃, CH₂Cl₂, CH₃Cl, CH₃Br, CH₂Cl₄, C₂Cl₄, CCl₄, CFC-113, HCFC-141b, HCFC-134a, C₂H₄Cl₂, CH₃I **N & S compounds:** CH₃CN, DMS

CAST BAe-146 Payload

The second second

CONTRAST

Parameter	Instrument	Performance	Institution
Ozone	TE49C	1 minute integration time, 1ppb detection limit (dl)	FAAM
Water vapour	General Eastern 1011 & Buck CR2		FAAM
Carbon Monoxide	Aerolaser 5002	1 minute integration time, 2 ppb dl	FAAM
Nitrogen oxides	Air Quality Designs	1 Hz, dI is 10 pptv for NO and 20 pptv for NO ₂	FAAM + York
VSL Halocarbons: CHBr ₃ , CH ₂ Br ₂ , CHBr ₂ Cl, CH ₃ I, CH ₂ BrCl, CHBrCl ₂ , C ₂ H ₅ I, CH ₂ ICl, CH ₂ IBr, CH ₂ I ₂ , CH ₂ Cl ₂ , CHCl ₃	In situ Agilent GC- MS with Markes dual TD	3-4 min sampling <i>in situ</i> , 2-3 min via WAS bottles < 0.01-0.05 ppt dl.	York
Whole Air Samples NMHC (C ₁ -C ₆), small OVOCs, DMS	Perkin Elmer GC- FID (WAS bottles, ~2-3 min sampling)	2-3 min sampling. 2.5, 1 pptv dl for C_2 - C_4 and > C_4 respectively	York
CO ₂ , CH ₄	Los Gatos	5 sec integration precision ±σ CH ₄ , 1.0 ppb; CO ₂ , 200 ppb. Max rate 10 Hz.	FAAM + Manchester
N ₂ O, H ₂ O	Aerodyne QCLAS	N ₂ O precision @ 1 Hz ±1σ, 0.2 ppbv. Max sampling rate 20 Hz.	Manchester
BrO	CIMS	2.6 pptv ± 3o @ 4 s integration	Manchester
Black Carbon	SP2	Black carbon mass size distribution, 1 Hz	Manchester

ATTREX GH Payload

Acronym	Weight (lb)	Power (W)	Measurement	Sampling Rate	Precision	Accuracy
CPL	366		Aerosol/Cloud Backscatter	1 Hz	10-15% backscatter	15-25% extinction
O ₃	40	200	O ₃	2 Hz	1.5 x 10 ¹⁰ molecules cm ⁻³	5% + precision
AWAS	200	300	~60 tracers with lifetimes of 1 week to years	80 samples per flight	Various, typically 1-10%	Various, typically 2- 20%
UCATS	60	250 (450) ^a	O ₃	10 s	> 1 ppb or 2%	> 2 ppb or 3%
			H ₂ O	1 s	2-3%	3-5%
			CH4	140 s	0.4-0.8%	1%
			N ₂ O	70 s	0.2-0.5%	1%
			CO	140 s	2-5%	1%
			H ₂	140 s	2-3%	1%
			CFC-11*	70 s	0.3-0.6%	1%
			CFC-12*	70 s	0.3-0.6%	1%
			Halon-1211*	70 s	0.5-0.8%	1%
			SF ₆	70 s	0.2-0.5%	1%
PCRS	45	370	CO ₂	5 s	200 ppbv	150 ppbv
			CO	5 min	3 ppbv	15 ppbv
			CH4	5 s	2 ppbv	1 ppbv
ULH	24	260	H ₂ O vapor	1-40 Hz	> 0.05 ppmv or 1%	10%
DLH	50	280	H ₂ O vapor	100 Hz	1% or 50 ppbv	10%
Hawkeye	135	3200	Ice crystal size distributions, habits	1 Hz	20%	50%
SSFR	40		Radiative Fluxes	20 Hz	0.1%	3%
MMS	65	135	Temperature	20 Hz	0.01 K	0.3 K
			Pressure	20 Hz	0.1 mbar	0.3 mbar
			Horizontal wind	20 Hz	0.01 m/s	1 m/s
			Vertical wind	20 Hz	0.01 m/s	0.1 m/s
MTP	24	51	Temperature Profile	1 prof/15 s	<1 K	<0.05 K
Mini-DOAS	33	28	BrO	50 s	0.9 pptv	8%
			O ₃		80 ppbv	2%
			NO ₂		20 pptv	5%
			OCIO		4.5 pptv	12%
			Ю		0.4 pptv	25%
			010		0.4 pptv	55%