

500 1000 1500 2000 2500 3000 3500 (mm/year)

CSE/ RHP	Ref #	Ref. Site Name					CSE/	Ref#	Ref. Site Name				
			Latitude		Longitude		RHP	Ret #	Ker. She Name	Latitude		Longitude	_
MAHA SRI(C AMP)	1	Eastern Siberian Tundra	71.617	Ν	128.750	Е	BALTEX	26	Lindenberg	52.170	Ν	14.120	E
	2	Eastern Siberian Taiga	62.255	N	129.618	Е		27	Sodankyla	67.370	Ν	26.633	E
	3	Mongolia	45.743	N	106.264	Е		28	Cabauw	51.970	Ν	4.930	E
	4	Tongyu	44.416	N	122.867	Е	СРРА /GAPP	29	ARM/Southern Great Plains	36.610	Ν	97.490	w
	5	Tibet	31.370	N	91.900	Е		30	Fort Peck	48.310	Ν	105.100	W
	6	Himalayas	27.959	Ν	86.813	Е		31	Bondville	40.010	Ν	88.290	W
	7	Northern South China Sea - Southern Japan	24.967	N	121.181	E		32	Oak Ridge	35.960	N	84.290	W
	8	Chao-Phraya River	18.400	Ν	99.470	Е	сііс	33	BERMS (MAGS)	53.990	Ν	105.120	w
	9	North-East Thailand	14.466	N	102.379	Е		34	Alert, Nunavut	82.467	Ν	62.500	w
	10	Western Pacific Ocean	7.452	Ν	134.476	Е		35	Eureka, Nunavut	79.995	Ν	85.813	w
	11	Mongol Arvayheer	46.246	N	102.798	Е	LBA	36	Rondonia	10.080	s	61.930	w
	12	Mongol Nalaikh	47.766	N	107.336	E		37	Pantanal	19.560	s	57.010	w
	13	Northern Mongolia	47.213	N	108.742	Е		38	Manaus	2.610	s	60.210	w
	14	Downstream of the Yellow River	36.649	N	116.054	Е		39	Brasilia	15.930	s	47.920	w
	15	Central Vietnam	16.033	N	109.185	Е		40	Santarem	3.020	s	54.970	w
	16	Northeast Bangladesh	24.900	N	91.893	Е		41	Caxiuana	1.710	s	51.510	w
	17	Pakistan Karakorum Network	35.728	N	76.286	Е	MDB	42	Tumbarumba (tower)	35.660	s	148.150	E
	18	Tsukuba	36.110	Ν	140.100	Е		43	Murrumbidgee (soil moisture, tempera	35.116	s	146.375	E
	19	Lanzhou	35.946	N	104.137	Е	Others	44	ARM/Tropical West Pacific (Manus)	2.060	s	147.430	E
	20	Heihe River Basin	39.500	N	100.000	Е		45	ARM/Tropical West Pacific (Darwin)	12.430	s	130.890	E
	21	Western Maritime Continent	0.200	s	100.300	Е		46	ARM/Northern Slope of Alaska	71.320	Ν	156.620	w
	22	Central Maritime Continent	0.000	s	109.400	Е		47	Chilbolton, UK	51.150	Ν	1.433	W
	23	Eastern Maritime Continent	1.200	s	136.100	Е	LPB	48	Cruz Alta	28.600	s	53.400	W
	24	Northern Maritime Continent	1.500	N	124.900	Е	АММА	49	Niamey	13.530	Ν	2.660	Е
	25	Southern Maritime Continent	6.400	s	106.700	Е		50	Ouémé	9.692	Ν	1.662	E
				-		_		51	Gourma	15.300		1.500	÷

Figure 1 CEOP Reference Sites

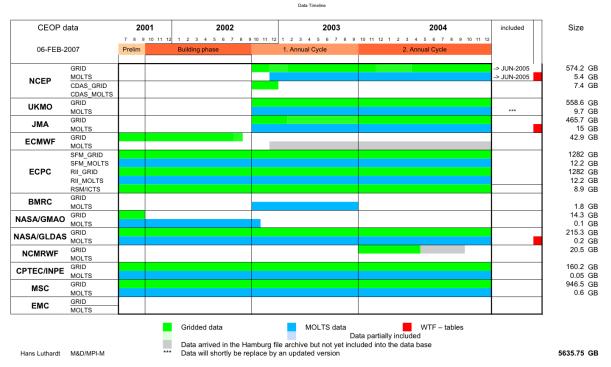


Figure 2 CEOP Model Archive at MPI

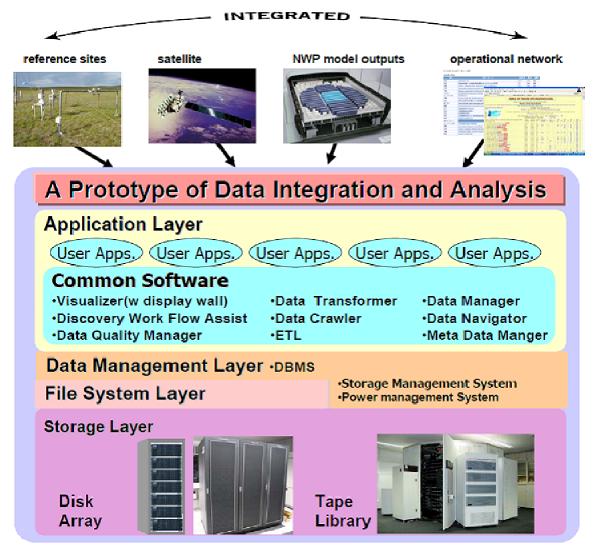


Figure 3 CEOP's data integration and analysis system

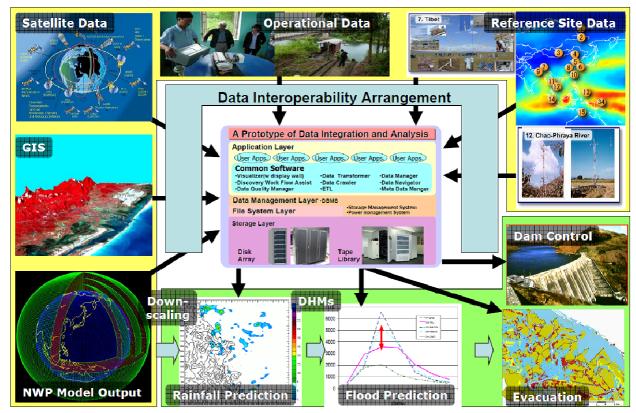
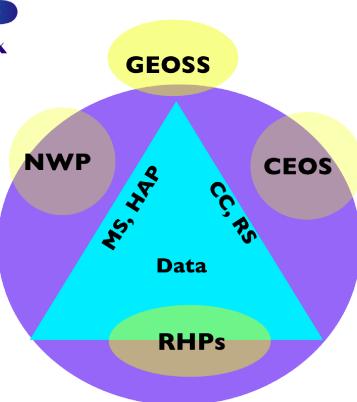



Figure 4 The architecture of the centralized data archiving and integration system

Coordinated Energy and water-cycle Observations Project

MS=Model Studies HAP= Hydrologic Applications CC= Cross Cutting Studies RS=Regional Studies Data=In situ, Model, Remote Sens. RHPs=Regional Hydroclimate Projects NWP=Num. Wea. Pred. Centers CEOS=Comm. on Earth Obs. Sat. GEOSS=Glob. Earth Obs. Sys. Of Sys.

Figure 5 Overall Structure of the new CEOP project of GEWEX, showing the contributions by the RHPs, RS, MS and HAP, anchored by the Data Management. CEOP depends on community participation from the international NWP centers, Committee on Earth Observations (remote sensing) and intends to make a significant contribution to the evolving implementation of GEOSS